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ABSTRACT

We present an image transform and show that it is useful

for fast generalized image registration. In particular, for an

image of the size N pixels, this transform takes O(N) ad-

ditions/subtractions and O(N1) multiplications where N1 is

the bigger of the image height and width (and equals N 1/2

for a square image) – much faster than the FFT. Unlike FFT,

whose speed depends on how the image size is factored, this

transform has no such limit. Furthermore, for any invertible

linear transform, including rotation, reflection, scaling, plus

any translation, this transform can be used to match an im-

age with its thus transformed image without any interpola-

tion and with the above mentioned complexity. This trans-

form can be applied naturally to signals of any dimension.

Experiments show the advantages of this method.

1. INTRODUCTION

Many image registration problems [1, 2, 3] can be formu-

lated as the following. Given an image x and another image

y obtained from x through some transform T , find such T .

The transform T can be translation, rotation, a combination

of the two, etc. The simplest method in pattern matching

is to take the (normalized) inner product, which is the same

as matched filter if we view x as a filter. To apply this ap-

proach to match x and y, one usually applies all possible

transforms T to x and then match the result to y. This is

very time-consuming if the search space of T is large. In the

case of translation only, FFT can be used to reduce compu-

tation complexity from O(N 2) to O(N log2 N) for some N
values. However, in the case of rotations, it becomes much

more complicated. Although spherical basis functions can

be used to facilitate the use of FFT, interpolation often intro-
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duces error. Furthermore, the possible reflection or scaling

in a single direction make this approach even more difficult.

In this paper we present another approach which is based

on an image transform and overcomes the difficulties men-

tioned above. We first consider the continuous signals and

view an image as a function on the plane R
2 and study the

following generalized transform,

Tx(t) = x(A(t − a)) (1)

where A is an invertible 2 × 2 real matrix and t and a are

vectors of size 2 × 1.

This class of transforms includes translations, rotations,

reflections, and scaling in any one or two directions. We

call image matching on this set of transforms generalized,

as compared to the same problem on more restricted set of

transforms. In the rest of the paper we present a method to

efficiently find such transform and discuss its applications.

2. THE TRANSFORM METHOD

Given any x and y such that y(t) = x(A(t − a)), Let H be

the set of functions defined as

H =

{
h : R → R,

∣∣∣∣
∫

h(x(t))tdt

∣∣∣∣ < ∞
}

.

Note that in the above definition, the integration inside | · |
is a 2 × 1 vector.

For any function h ∈ H , Define

u(h, x) =

∫
h(x(t))tdt (2)

and

v(h, x) =

∫
h(x(t))dt. (3)

Then it can be derived that

u(h, y) =
1

|A|
(
A−1u(h, x) + v(h, x)a

)
. (4)
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Note that in (4) we have a linear equation with 6 vari-

ables, 4 from the matrix A−1/|A| and 2 from the vector

a/|A|. By changing h, we get other such linear equations,

then a simple least square estimate can be performed to get

B =
1

|A|A
−1 (5)

and

b =
1

|A|a (6)

and the final estimates for A and a are obtained as

Â = |B|1/3B−1 (7)

and

â = |B|−1/3b. (8)

3. PRACTICAL CONSIDERATIONS

Although the set H is quite general, in practice there are

at least three considerations that needs to be taken into ac-

count, namely, non-degeneracy, speed and accuracy.

The system (4) will be degenerate if v = 0, or x has

zero mean. In this case (6) is no longer valid since b is

indeterminable, and we cannot estimate a. Similarly, if h’s

are all linear functions, the system is also degenerate. To

eliminate such situations, we can choose h to take the form

h(r) = |f(r)| where f is some function and r ∈ R.

In computer processing speed is always an important is-

sue. To increase speed, effort is often made to use simple

operations such as addition/subtraction and logical and/or

as much as possible. So we can choose h as h(r) = |r − c|
where c is any constant.

Furthermore, suppose the background intensity value is

0, then we also need to make h continuous at 0 so that

h(x(t))t will be integrable on R
2. And taking into con-

sideration of the various errors such as the image sampling

error, it’s good to make h continuous. With all these con-

siderations, and without loss of generality assuming that x
and y are nonnegative, we can choose the following set

H =

⎧⎨
⎩h : h(r) =

⎧⎨
⎩

r, r < c

|2c − r|, r ≥ c
, r ∈ R

+

⎫⎬
⎭ (9)

where R
+ is the set of non-negative real numbers.

4. EXPERIMENTS

We present the experimental results to show the advantages

of the algorithm developed in this paper. In the experiments,

each pixel size is taken to be 1 × 1 unit. The integrations in

(2) and (3) are taken as

u(h, x) =
∑
t1,t2

h(x(t1, t2))

[
t1
t2

]

=

⎡
⎢⎢⎣

∑
t1

t1
∑
t2

h(x(t1, t2))

∑
t2

t2
∑
t1

h(x(t1, t2))

⎤
⎥⎥⎦ (10)

and

v(h, x) =
∑
t1,t2

h(x(t1, t2)). (11)

By using the h functions chosen from the set H defined

in (9), we see that the computation of u(h, x) in (10) needs

O(N) additions/subtractions and O(N 1/2) multiplications

for a square image of a total of N pixels.

First we note that if the transform is translation only, i.e.,

the matrix A is identity, then there are only two parameters

and we can easily compute the estimate â as

â =
u(h, y) − u(h, x)

v(h, x)
. (12)

This simple case is simulated and we always get â = a.

An example is presented in Figure 1, where the upper left

256× 256 portion of an 1000× 1000 image is translated by

[700, 500]T .

Next we present a more general case where A is a ro-

tation matrix multiplied by a scaling factor. A 256 × 256
test image is first embedded in the center of an arbitrary

1000 × 1000 background image to get x. Then for every

10 degrees from 0 to 180, it is first scaled by a factor s
randomly chosen in the range [1/1.2, 1.2], rotated counter-

clockwise by that degree through nearest-neighbor interpo-

lation, then translated by the vector a whose two integer

numbers are randomly chosen from the range [−200, 200].
The rightward and downward directions are the positive di-

rections of the coordinate system.

For each choice of h (or c), we get two equations. There

are a total of 6 (correlated) parameters, so we can choose to

apply (4) at least 3 times. We choose 3 in the experiment

with the 3 choices of c value equally spaced in the pixel

value range. When running on a Pentium 4/2.4GHz proces-

sor as a C++ program, it takes about 7 seconds to complete

the 19 matchings. The parameters used to generate y and

the estimated parameters are tabulated in Table 1. The im-

ages x and y for the rotation angle θ = 40◦ are presented in

Figure 2.

From Table 1 we see that the estimation is fairly accu-

rate. For larger range of scaling, we find that the estimation

errors also start to increase. This is possibly because of the
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larger interpolation error during the scaling process in the

generation of y.

5. DISCUSSION

The transform we present in this paper proves to be effective

and efficient for a wide range of transforms in image match-

ing and registration. We next discuss some extensions and

limitations of this transform.

We first see that this transform is very effective for reg-

istration in an image database. All we need to do is to attach

a vector of size 2n (n ≥ 3) to each image, then given any

image we compute its u and v values and do a 6-parameter

least square fit for each image in the database. Any fit with

near 0 square error is a match. Also, the function x doesn’t

have to be single valued as in the gray scale image case. If

x is a vector as in the color image situation, the transform

can be readily applied to each element of x and the com-

putation complexity remains the same. For example, for a

gray scale image, we need to choose at least 3 different h
functions to estimate A and a. For an RGB color image of

the same size, we only need one h function to be applied to

the 3 color bands of the image. The total computation cost

is not changed. In addition, this transform naturally extends

to higher dimensions. For a k-dimensional object matching

problem, there are k2 + k transform parameters to be es-

timated, k2 for A and k for a. The transform (3) and (4)

can be computed only k + 1 times. In terms of the number

of multiplications, for a general k dimensional signal with

length n1, n2, · · · , nk in each dimension, the total number

of multiplications is (k + 1)(n1 + n2 + · · · + nk). This is

very efficient compared to FFT.

A major drawback of this transform is that it cannot

be directly applied to use a template to pick out an object

from a scene where other objects not from the template are

present. One simple way to get around this problem is to

first segment the scene and then do a registration problem

on the segments. We point out that if in the scene all the ob-

jects are variously transformed objects from the same tem-

plate, the method in this paper still can be applied directly.

The only difference is that we now have 6m parameters to

estimate where m is the number of objects, and hence the

number iterations is also multiplied by m.
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(a) Image x

(b) Image y

Fig. 1. Translation estimation. Image y is x translated right

and down by 700 and 500 pixels respectively. The estimates

from (12) are also 700 and 500.
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θ s a1 a2 θ̂ ŝ â1 â2

0 0.89 -95 116 0 0.88 -95 115

10 0.92 -19 37 10 0.92 -19 37

20 1.00 59 34 20 1.00 59 34

30 0.94 -31 147 27 0.96 -32 150

40 1.17 -115 -171 36 1.18 -118 -176

50 0.86 -146 -134 50 0.86 -146 -133

60 0.91 110 11 60 0.91 110 11

70 1.19 -142 81 70 1.19 -142 81

80 1.10 79 31 82 1.10 79 31

90 1.18 -49 38 90 1.18 -48 37

100 1.11 -42 96 100 1.12 -43 97

110 1.14 -21 -123 108 1.14 -21 -122

120 1.18 -133 88 122 1.18 -133 87

130 0.85 -55 -142 133 0.85 -55 -145

140 1.10 77 -57 140 1.10 77 -57

150 0.85 38 -51 150 0.85 38 -51

160 0.85 -82 -188 160 0.85 -82 -188

170 0.99 -196 -130 169 0.98 -195 -129

180 0.94 33 101 180 0.93 33 98

Table 1. Image registration simulation result. θ is the ro-

tation angle in degrees, s is the scaling factor, a1 and a2

are the translation values in the horizontal and vertical di-

rections respectively. The right half of the table lists the

estimated values for those parameters from the algorithm in

this paper.

(a) Image x

(b) Image y

Fig. 2. Example of a transformed image. y is obtained by

shrinking x to 1
1.17 the original size, followed by rotating it

counter-clockwise by 40 degrees, and then translated to the

left and up by 115 and 171 pixels respectively. The match-

ing algorithm developed in this paper estimates those values

as 1
1.18 , 36 degrees, 118 and 166 respectively.
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