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ABSTRACT

Hyperspectral images are used for aerial and space imagery
applications including target detection, tracking, agricultural
and natural resource exploration. Unfortunately atmospheric
scattering, secondary illumination, changing viewing angles
and sensor noise degrade the quality of these images. In
this paper we introduce a novel superresolution reconstruc-
tion method for hyperspectral images. An integral part of
our work is to model the hyperspectral image acquisition
process. We propose a model that enables us to represent
the hyperspectral observations from different wavelengths
as weighted linear combinations of a small number of basis
image planes. Then a method for applying superresolution
to hyperspectral images using this model is presented. The
method fuses information from multiple observations and
spectral bands to improve spatial resolution and reconstruct
the spectrum of the observed scene.

1. INTRODUCTION

One of the most expensive parameters in a space imaging
system is the spatial resolution. Unfortunately, it is also one
of the hardest to improve. There are many factors (imperfect
imaging optics, atmospheric scattering, secondary illumina-
tion effects, sensor noise, etc.) that degrade the acquired
image quality and limit the performance of algorithms that
use these images as input. In many situations, modifying the
imaging optics or the sensor array is not an available option,
thus highlighting a clear need for post-processing. Since the
spatial resolution is a key parameter in many applications
related to space imagery (anomaly and target detection, to
name a few), it is obvious that any improvement here is im-
portant. To improve the spatial resolution of hyperspectral
images, we can make use of superresolution techniques to-
gether with the information at different wavelengths of the
sensed illuminance that is available with hyperspectral sen-
sors.

This work was supported in part by the Office of Naval Research
(ONR) under Award N00014-01-1-0619 and by the National Science
Foundation under Award CCR-0113681.

Superresolution reconstruction can be defined as the pro-
cess of combining multiple low resolution images to form a
higher resolution image. In their early work on the subject,
Tsai and Huang [1984] disregarded the blur in the imaging
process and carried out a frequency domain analysis of the
superresolution problem. In [1] Schultz and Stevenson de-
scribed a MAP estimator with a Huber-MRF (Markov ran-
dom field) prior model to preserve discontinuities and solve
the blurring problem observed in the high resolution im-
ages reconstructed with smoothness imposing priors. In the
projections onto convex sets (POCS) based superresolution
methods [2] an initial estimate of the high resolution target
image is updated iteratively based on the error measured
between the observed and synthetic low-resolution images
obtained by simulating the imaging process with the initial
estimate as the input.

Examples of somewhat related ideas can be found in
the hyperpsectral imaging field. In [3] Zhukov, Oertel and
Lanzl proposed methods for multi-resolution image fusion
in the context of the hyper-spectral un-mixing problem. Win-
ter [4] presented an alternative technique to combine a high
resolution panchromatic image with a lower resolution hy-
perspectral image to obtain a product that has the spectral
properties of the hyperspectral image at a higher spatial res-
olution.

In this paper we propose a novel hyperspectral image
acquisition model that enables us to represent hyperspectral
observations from different wavelengths as weighted linear
combinations of a small number of aliased and blurred ba-
sis image planes. We proceed by formulating the recon-
struction process as the inverse problem of finding a high
resolution target hyperspectral image that agrees best with
the observations under the proposed model. Then a set-
theoretic method is used to solve the inverse problem. Fi-
nally we present results obtained from experiments carried
out on 224 band AVIRIS (Airborne Visible/Infrared Imag-
ing Spectrometer) image data.

III - 4970-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



2. THE ACQUISITION MODEL

In this section we model the image acquisition, spatial fil-
tering, spectral filtering, and sampling. We begin with a
summary of the mathematical notation that will be used
throughout the paper. The hyperspectral image data is best
represented as an R-dimensional vector for each pixel, where
R is the number of spectral bands. The images are assumed
to be N1 × N2 so that the input data forms an N1 × N2 ×
R data cube. Following this convention we let f [n] =
[f1[n] f2[n] . . . fR[n]]T denote the R-dimensional pixel
value at location n = [n1, n2]T (note that bold letter vec-
tor notation applies to other spatial indices as well). We use
fj(x) to denote the jth spatially continuous high resolu-
tion (target) image plane and fj [n] for the jth spatially dis-
crete high resolution image plane. Similarly gi(x) denotes
the ith continuous low resolution (source) image plane and
gi[m] denotes the ith discrete low resolution image plane.
The ideal continuous-space and continuous-spectrum image
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Fig. 1. The imaging model.

signal, denoted by fc(x, λ, k), represents the actual input to
the imaging device. In this notation k is the observation
index. Our main assumption in superresolution reconstruc-
tion is that we have access to multiple observations of the
scene for which we wish to apply superresolution. Super-
resolution reconstruction then fuses the information present
across these observations to obtain a higher resolution im-
age of the target scene. Ideally, we would like to reconstruct
fc(x, λ, k) from the available observations, but fc(x, λ, k)
is continuous in all dimensions and there is no way we can
implement a solution to this problem using digital hardware.
We will deal with this limitation in two steps. First, we will
consider the spectral dimension, where we will make use
of a well known and widely used property of hyperspectral
image data. Then, we will look into the spatial dimension.

It is a well known fact that the spectral reflectance of
natural images can be accurately modelled using linear com-
binations of a relatively small number (generally around
seven) of reflectance basis functions, p1(λ), . . . , pP (λ).
These illuminant-independent orthonormal basis functions
can be obtained by applying PCA (Principal Components
Analysis) to a large set of natural image reflectances and

selecting the first P principal components. If we denote
the illuminant spectrum as L(λ), then one possible choice
for a set of illuminant-dependent basis functions is bi(λ) =
L(λ)pi(λ). As a first step in our model we will assume that
fc(x, λ, k) is representable as a linear combination of these
basis functions. That is, at every location, fc(x, λ, k) will
be represented by a P -dimensional vector, where the ele-
ments of this vector are the coefficients of the correspond-
ing orthonormal basis functions. Note that the choice of
basis functions is application specific. If we are trying to
improve the resolution of a specific material with a known
spectral signature, then the training images can be chosen
accordingly to have basis vectors tailored for that specific
material. Also at the expense of increased computational
load, the number of the basis functions used to represent
fc(x1, x2, λ, k) can be increased and the representation er-
ror can be made arbitrarily small. Finally, the use of PCA
to find the spectral basis functions is totally arbitrary. In
fact, the basis functions may be calculated using a variety of
approaches including but not limited to, convex geometry-
based approaches, noise reduction-based approaches, etc.
(see [5] for a detailed discussion of the available techniques).

To deal with the spatial domain, we hypothesize that
for each of the P spectral basis image planes, there ex-
ists a corresponding discrete, high-resolution target image
plane fj [n, k] (j = 1, 2, . . . , P ) and we seek to reconstruct
fj(x, k) from that signal. The main assumption here is that
the spatially continuous signal fj(x, k) is bandlimited and
therefore could be reconstructed from the spatially discrete
high-resolution image fj [n, k] through an ideal reconstruc-
tion filter. In the light of the explanations given above the
imaging model shown in Fig. (1) is now derived.

The first step in the ideal reconstruction process is con-
version of the discrete signals into impulse trains. This is
followed by application of a reconstruction filter, hr(x).

fj(x, k) =
N1−1∑
n1=0

N2−1∑
n2=0

fj [n, k]hr(x1− n1

L1
, x2− n2

L2
). (1)

Note that the spatial sampling frequency is normalized for
the low resolution grid so that L1 and L2 show the increase
in the spatial sampling density when we move from the low
resolution image (source) to the high resolution image (tar-
get). If we denote the continuous signal as fc(x, λ, k) then
we have

fc(x, λ, k) =
P∑

j=1

bj(λ)fj(x, k). (2)

We use h(x) to denote the spatially invariant blur filter. This
models the imperfect imaging optics (e.g. lens blur) and
the unavoidable sensor integration blur caused by the finite
sensor area. The blur operation can be written as the con-
volution of the target image planes with the point spread
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function of the blur filter

fc,b(x, λ, k) =
∫∫

h(x1 − ν1, x2 − ν2)fc(ν, k, λ)dν,

where subscript c, b means continuous and blurred. Let us
assume that the pixel located at xr = (x1,r, x2,r) in ob-
servation kr corresponds to x = (x1,x2) in observation k.
That is, fc(xr, kr, λ) = fc(x, k, λ). We will use the mo-
tion mapping M for relating the available observations to
the reference observation (for a detailed explanation of this
motion mapping refer to [2]). M = (M1,M2) is then de-
fined as

x1,r = M1(x1, x2, k, kr),
x2,r = M2(x1, x2, k, kr).

Next by using the inverse of the mapping mentioned above,
we can write fc,b(x, λ, k) in terms of fc(xr, kr, λ).

fc,b(x, λ, k) =
∫∫

h(x1 − M−1
1 (xr, k, kr), (3)

x2 − M−1
2 (xr, k, kr))|J | × fc(xr, kr, λ)dxr,

where |J | is the Jacobian of the motion mapping. If we
define hM (x; xr; k; kr) as

|J |h(x1 − M−1
1 (xr, k, kr), x2 − M−1

2 (xr, k, kr)), (4)

fc,b(x, λ, k) can be written as follows:

fc,b(x, λ, k) =
∫∫

hM (x; xr; k; kr)fc(xr, kr, λ)dxr.

Substituting from (2) for fc(x, λ, k) into this expression we
get

fc,b(x, λ, k) =
P∑

j=1

bj(λ)
N1−1∑
n1=0

N2−1∑
n2=0

fj [n, kr]hb(x; n; k; kr),

where we defined hb(x; n; k; kr) as∫∫
hM (x;xr; k; kr)hr(x1,r − n1

L1
, x2,r − n2

L2
)dxr, (5)

to get a simpler expression for fc,b(x, λ, k).
The spectral response functions, ri(λ) with i = 1 . . . Q,

where Q stands for the number of spectral bands in the
observation (source) images, model the hyperspectral sen-
sors’ efficiency at different wavelengths as well as the at-
mospheric effects on the spectrum.

gi(x, k) =
∫ ∞

0

fc,b(x, λ, k)ri(λ) dλ (6)

Next we must spatially discretize the images to make a prac-
tical implementation possible. This is done by sampling the
gi’s on a low resolution M1 × M2 grid.

gi[m1,m2, k] = gi(x1, x2, k)
∣∣∣
x1=m1, x2=m2

(7)

Finally, the additive noise, v[m1,m2, k], models the total
effect of all possible noise sources (unavoidable sensor noise,
sampling noise, quantization noise introduced when the sam-
pled pixel values are quantized) that exist throughout the
whole acquisition process.

gi[m, k] + vi[m, k] for i = 1, . . . , Q (8)

Eq. (9) shows the relationship between the low resolution
observations and the high resolution target through the dis-
creet spatially shift-varying blur function hb. Given this
imaging model, the inverse problem can be stated as finding
the target image that is in as much agreement as possible
with the observations. When we say the candidate target
image is in agreement with the observations we mean that if
we apply the linear, time and space-varying (LTSV) filter hb

in (9) to the candidate target image, the resulting synthetic
observation image is close to the real observations captured
by the imaging device under consideration. A widely pre-
ferred way of solving such inverse problems is the Projec-
tion Onto Convex Sets (POCS) algorithm, which is an iter-
ative set-theoretic method. We have used POCS method to
solve the inverse problem that is stated by the mathematical
relationship given in Eq. (9), [2].

3. EXPERIMENTAL SETUP AND RESULTS

The proposed method is tested with 224 band (Q=224) hy-
perspectral images of an urban area (Moffett Field) captured
by AVIRIS. For detailed information on the data set see [6].
Since the image dimensions are too large, some specific re-
gions are extracted from the original data and used in the
simulations. The simulations are conducted under two dif-
ferent motion scenarios, namely single cube (no motion)
and multiple cubes with global affine motion. Note that
for the type of images we are working on, these are rele-
vant and realistic motion models. We have three different
test configurations for each scenario. In case one, to obtain
the low resolution observations we use a 3 × 3 Gaussian
spatial blur filter with unit variance and a Gaussian spectral
blur filter with unit variance. The down-sampling ratio is
two in both vertical and horizontal directions. In case two,
we use a 5 × 5 Gaussian spatial blur filter with unit vari-
ance, a Gaussian spectral blur filter with unit variance and
the down-sampling ratio is four in both vertical and hori-
zontal directions. Case three is almost the same as case two
except for the fact that the variance of the Gaussian spatial
blur filter is two instead of one. We provide the follow-
ing simulation results to demonstrate the proposed method
under the motion scenarios mentioned above together with
the results of bilinearly interpolating the separate spectral
bands. The results given in Table (1) are PSNR values in
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gi(m, k) =
P∑

j=1

wi,j

N1−1∑
n1=0

N2−1∑
n2=0

fj [n, kr]hb(m; n; kk; kr) + vi[m, k], where wi,j =

[ ∫ ∞

0

bj(λ)ri(λ) dλ

]
(9)

AVIRIS Radiance Data - Region 1

Bilinear Single-cube Multi-cube
interpolation (no motion) (affine)

Case 1 36.1382 38.3745 42.8398
Case 2 31.9181 32.2407 39.3321
Case 3 31.7053 32.5597 37.1517

AVIRIS Radiance Data - Region 2

Bilinear Single-cube Multi-cube
interpolation (no motion) (affine)

Case 1 35.9959 37.6029 40.5035
Case 2 32.4086 32.7777 37.8406
Case 3 32.1307 33.1518 36.0935

Table 1. Numeric results

deciBels, where PSNR is defined as

PSNR = 10 log10

(
Speak

MSE

)
dB.

From Table (1), we can see that the proposed method
even with a single source cube performs better than bilin-
ear interpolation. Using multiple cubes further improves the
results, thus pointing out the advantage of fusing the infor-
mation present across overlapping sources. Visual results
presented in Fig. (2) also confirm the improvement seen in
PSNR values.

4. CONCLUSION

In this paper, the problem of spatial and spectral recon-
struction in hyperspectral images has been addressed. We
have proposed a linear deterministic model of the hyper-
spectral image acquisition process and supplied a mathe-
matical formulation describing the process as a system of
linear equations. We have formulated the reconstruction
problem (within the limitations of this model) as finding
the target hyperspectral image that satisfies the previously
mentioned set of linear equations as closely as possible for
the given observation(s) of the desired target image. We
have proposed a set theoretic solution method and presented
numerical and visual results validating the proposed recon-
struction technique. The reconstruction technique presented
in this paper can be utilized as a post processing step in hy-
perspectral imaging applications such as anomaly detection
for increased detection accuracy.

(a) Original (b) Bilinear

(c) Single-cube POCS (d) Multi-cube POCS

Fig. 2. Visual results for case two. Shown in the figure is
the hundredth spectral band.
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