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ABSTRACT

Traditional printing technologies use metamerism to match
color between original objects and reproduced images under
certain lighting constraints. These techniques become un-
satisfactory for applications demanding high color accuracy
where lighting conditions are subject to change, for exam-
ple, artwork reproduction. Therefore, it is desirable to re-
produce the image using colorants whose spectrum is clos-
est to the original print. To estimate the original object pri-
mary colorant spectrum, we propose a blind spectral separa-
tion algorithm by combining Independent Component Anal-
ysis (ICA) and Non-Negative Matrix Factorization (NNMF).
Our experimental results show a satisfactory match between
the original and the estimated primaries’ spectrums.

1. INTRODUCTION

Conventional printing technologies only achieve metameric
color match between original objects and reproduced im-
ages under certain lighting constraints. However, the results
become unsatisfactory for applications demanding high color
accuracy where lighting conditions are subject to change,
for example, artwork reproduction, product catalog and mu-
seum image archiving. The perceived image is determined
by the reflected light of objects reaching retina, and it is
governed by the following integral equation:

Sr(λ) =
∫

R(λ)Si(λ)dλ (1)

where Si(λ) and Sr(λ) represent the incident and reflected
light spectrum, and R(λ) is the object reflectance curve.
The human retina composes of three types of light receptors
behaving as bandpass filters which map the perceived light
from an infinite dimensional space to a three dimensional
subspace. Hence, it is possible for two objects with differ-
ent light reflectance curves to be perceived as possessing the
same color under certain Ŝi(λ), noted as metameric pair,
because of the above many-to-one mapping. In this case,
it is desirable to reproduce the image using colorants whose
spectrum is closest to the original object. Therefore, first es-
timating the primary colorants’ reflectance spectrum of the

original object becomes essential. In this paper, we address
this spectral separation problem by assuming the original
objects to be color prints such as art paintings, while the
same spectral separation problems also exist in other situa-
tions such as remote sensing and hyperspectral data analy-
sis. [1,2]

The spectral separation problem can be divided into two
sections: transforming the signal to a linear spectral-mixing
space and designing a blind signal separation algorithm. A
linear spectral-mixing space allows the following separation
problem to be more tractable because it can be formulated as
an under-determined algebraic linear system. The spectral-
mixing characteristics on prints can be modelled using mul-
tiple light absorption and reflection by the primary colorants
and various interfaces, which is highly nonlinear. Various
theories have been proposed to describe this spectral mixing
characteristics, such as Yule-Nielsen model and Kubelka-
Munk theory [1,3]. We will compare these two models in
the following section to verify its linearity after applying the
corresponding transformation.

We propose a spectral separation algorithm that com-
bines Independent Component Analysis ICA and NonNeg-
ative Matrix Factorization NNMF. It has been argued that
natural constraints of spectral components and nonnegativ-
ity of the primary colorants amount make NNMF a viable
approach [4]. Assuming that the reflectance spectrum of
the primary colorants are independent of one another, we
first calculate a set of independent component signals as
the initial condition for the ensuing NNMF algorithm. The
non-negative constraint can be shown to be a intersection
of two convex sets. As a result, we propose a NNMF algo-
rithm based on the principle of projection onto convex sets,
POCS [5]. Finally, we verify our algorithms by comparing
the recovered primary reflectance spectrum with the mea-
sured primary reflectance spectrum. Our experiment results
demonstrate satisfactory match.

2. SUBTRACTIVE SPECTRAL MIXING MODEL

A print is perceived when light reflected from that print
reaches our eyes. Thus, the portion of spectrum absorbed
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by the colorant will be missing from the perceived light,
i.e. subtractive spectral mixture. We set linear spectral mix-
ing spaces using two models, the Yule-Nielsen model and
Kubelka-Munk theory, respectively. Considering the col-
orant, substrate and colorant/substrate interaction, the Yule-
Nielsen model describes the perceived spectrum, R(λ), as
following [6]:

R(λ)
1
n = (1 − A)Rs(λ)

1
n + ARc(λ)

1
n (2)

where Rc(λ) and Rs(λ) represent the reflectance spectrum
of the colorant and the substrate respectively, and A is the
relative substrate area percentage covered by colorants. The
N-factor, n, in Equation (2) takes into account of multi-
ple reflection at air-colorant-substrate interfaces. Equiva-
lently, Yule-Nielsen model suggests that the nth root of the

reflectance spectrums
k⋃

i=1

Ri
c(λ) and Rs(λ) form a linear

spectral mixing space.
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Fig. 1. Bi-Chrome Yule-Nielsen Model Fit

Let K(λ) and S(λ) be the absorption and scattering co-
efficients of a primary colorant, and the Kubelka-Munk the-
ory describes the light reflection via a differential equation
system [3,6]:

dIi(w)
dw

= [K(λ) + S(λ)]Ii(w) − S(λ)Ir(w) (3)

dIr(w)
dw

= S(λ)Ii(w) − [K(λ) + S(λ)]Ir(w) (4)

where Ii(w) and Ir(w) are the incident and reflected light
intensity at position w within the colorant. w = 0 is the
substrate-colorant interface and w = W represents the col-
orant/air interface. Thus, the reflectance spectrum R(λ) =
Ir(w)/Ii(w) and Rs(λ) = Ir(0)/Ii(0). Further assume
that K � S, and the above differential equation system can
be solved as following:

K(λ)W = ψ(λ) = −0.5 ln(R(λ)/Rs(λ)). (5)

Because ψ(λ) is proportional to the light absorbed by the
colorant and previous literatures have demonstrated its mix-
ture linearity in paint and plastics [1], we will also test the
above logarithmic transformation to linearize the colorant
mixing problem.
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Fig. 2. Bi-Chrome Kubelka-Munk Theory Fit

A set of known primary colorants are adopted to create
patches with two different colorants. The fitness between
the measured and the fitted reflectance spectrums are used
to verify the linearity of two transformations as noted in
Equations (2) and (5), where the red curve is the measured
reflectance and blue curve is the fitted reflectance. Figure 1
and 2 show that the Kubelka-Munk theory provides a better
linear spectral mixing transformation. Note that n = 3 is
selected in the Yule-Nielsen model.

3. PROPOSED ALGORITHM

Based on previous spectral mixture linearity analysis, we
will first map the measured reflectance spectrum to ψ(λ)

via Equation (5). Let
u⋃

i=1

ψi(λ) be the set of unknown pri-

mary signals in the transformed spectral space, and each
reflectance measurement can be decomposed as following:

φ(λ) =
u∑

i=1

γiψi(λ) (6)

where γi and ψi(λ) are unknown independent vectors with
nonnegative elements. Assume the reflectance spectrum is
measured at p locations and q frequency bands, and the
above decomposition can be written as a matrix form:

Φ = ΨΓ, (7)

where Φ, Γ and Ψ are q×p, p×u and q×u matrices respec-
tively, and p, q � u. This is similar matrix factorization as
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the PCA and ICA except for the nonnegative constraint on
the elements of Γ and Ψ.

3.1. Independent Component Analysis

Let ψi(λk) = µi + ψ̄i(λk) such that
q∑

k=1

ψi(λk) = qµi and

q∑
k=1

ψ̄i(λk) = 0. Equation (6) can be rewritten as following:

φ =
u∑

i=1

(γiµi + γiψ̄i) =
u∑

i=1

γiµi + φ̄, (8)

where
q∑

k=1

φ̄(λk) = 0. Hence, considering the vector com-

ponents with zero mean, Equation (7) is updated as

Φ̄ = ΓΨ̄. (9)

Because each primary reflectance can be assumed to be in-
dependent of each other, a set of independent components,

denoted as
u⋃

i=1

ϕ̄i(λ), with zero mean can be estimated via

ICA decomposition [7]. Note that ϕ̄i(λ) is not necessarily
equivalent to the basis components, ψ̄i(λ), thus the DC bias,
µi, still needs to be estimated. As a result, we can compute
ϕi = αi + ϕ̄i satisfying the nonnegative constraint with
minimal αi in order to serve as the initial condition for the
following NNMF algorithm. It can be readily shown that

ϕi = |min
λ

ϕ̄i(λ)| + ϕ̄i. (10)

3.2. POCS Non-Negative Matrix Factorization

The NNMF algorithm has been adopted to solve problems
where the nonnegativity constraint, C, on the matrices el-
ements arise. Various algorithms based on minimizing a
designed cost function have been proposed [8,9,10]. In this
paper, we propose to solve this problem by first represent-
ing C as an intersection of two convex sets. Consequently,
a POCS NNMF algorithm can be formulated, and it can be
shown to weakly converge to a point in C.

Assuming Ψ is known in Equation (7), the nonnegativity
constraint C1 ≡ {γ•i ≥ 0, i = 1 · · · p} is a convex set, and
the projection operator P1:

P1 ≡ {γ•i| min
γ•i∈C1

‖φ•i − Ψγ•i‖, i = 1 · · · p} (11)

can be easily solved independently via mathematical pro-
gramming [11]. On the other hand, if Γ is known, the non-
negative constraint C2 ≡ {ψi• ≥ 0, i = 1 · · · q} is also a
convex set with the projection operator P2:

P2 ≡ {ψi•| min
ψi•∈C2

‖φT
i• − ΓT ψT

i•‖, i = 1 · · · q}. (12)

P2 can be implemented by the same mathematical program-
ming routine as P1. Because C = (C1 ∩ C2) �= ∅, where
C1 and C2 are closed convex sets, based on the following
theorem of POCS proved by Gubin, Polyak and Raik, the
operator P̄ = P2P1 will converge weakly [5].

Fundamental Theorem of POCS : Let C be an intersec-
tion of M closed convex sets in a Hilbert space H ,
and Ti = I + ξi(Pi − I), where Pi is the projec-
tion operator onto Ci and ξi ∈ (0, 2). Denote T =
TM · · ·T1, and sequence {Tnx, n = 1 · · ·∞}, ∀x ∈
H , converges weakly to a point in C.

ξi = 1 in our algorithm, but it is possible to be modified to
improve the convergence rate.

4. EXPERIMENT RESULTS

The ISO-Standard test target as shown in Figure 3 is used to
verify the proposed algorithm. This test target is reproduced
by using four primary colorants: cyan, magenta, yellow and
black. The reflectance spectrums of four primary colorants
are measured a priori and serve as the ground truth, which is
only used to compare with the recovered basis components.

Fig. 3. W1.1 CMYK Test Target
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Fig. 4. Estimated 3 Indepen-
dent Components
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Fig. 5. POCS NNMF basis
Components

Figure 4 shows that the first three independent compo-
nents in the transformed spectral space, and Figure 5 is the
corresponding recovered basis components using the pro-
posed POCS NNMF algorithm. It is obvious that the com-
ponents estimated by Equation (10) is less smooth than the
final recovered basis components which exhibit as a set of

III - 491

➡ ➡



bandpass filters with distinct passbands. Because the black
colorant can be considered as an all-stop filter in the visible
light frequency range, it can be replaced approximately by
a linear combination of other primary colorants. As a re-
sult, a progressive recovery algorithm is adopted where one
single basis component is estimated from points with less
satisfying spectrum matches. Figure 6 demonstrates a good
agreement between the measured and recovered reflectance
spectrums of four primary colorants, represented by red and
blue curve respectively. Finally, it shows in Figure 7 that
the proposed POCS NNMF algorithm converges only after
three iterations.
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Fig. 6. Primary Colorant Reflectance Separation

5. CONCLUSION AND FUTURE WORK

A blind primary colorant spectral separation algorithm is
proposed by combining ICA and POCS NNMF. By first
mapping to a linear spectral-mixing space, a set of inde-
pendent components are estimated via ICA and used as the
starting point for the following POCS NNMF algorithm. We
successfully demonstrate a good match between the mea-
sured and recovered reflectance spectrums of primary col-
orants. We will test our algorithm using actual printed im-
ages. This spectral separation algorithm can be further ex-
tended in the future to other applications such as remote
sensing and hyperspectral data analysis.
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