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ABSTRACT

We consider the problem of selection of samples during image ac-
quisition in a color digital camera. Due to the high cost of imaging
sensors, digital cameras do not ordinarily employ separate sensors
for each color channel. Instead, a single sensor overlaid with a mo-
saic of color filters is used such that a single color channel is sam-
pled at each photosite. The full-color image must be reconstructed
before the image may be displayed. In this paper, we propose a
perceptually based sample selection scheme for color filter arrays.
Regularization techniques are used to formulate an error criterion
that reflects the error between the original image and the recon-
structed image when viewed through the human visual system. A
sequential selection algorithm is used to select sample locations
that minimize the error criterion. The resulting array is found to
compare favorably with existing array patterns in terms of the error
criterion.

1. INTRODUCTION

To be able to display a color image in print or on a display de-
vice, we need full information about at least three color primaries
at each pixel location. Ideally a color digital camera would sample
all color channels from an imaged scene at each pixel. In practice,
in the interests of cost and size, typical digital color cameras only
sample one color sample at a particular pixel. A mosaic of color
filters is overlaid on the imaging sensor to achieve sparse sam-
pling. Missing samples are reconstructed in a post-processing step
commonly referred to as demosaicking. In this paper we propose
a method of sample selection based on the nature of the human
visual system.

Many different sampling configurations have been proposed
by researchers and applied commercially. The first such array pat-
tern was disclosed by Bayer in 1975 [1]. The Bayer pattern (Fig.
1) is the most commonly used color filter array (CFA) pattern, and
most reconstruction algorithms proposed in the literature assume
Bayer sampling. The pattern described by Bayer samples the addi-
tive primaries red, green, and blue and is an RGB CFA. The array
is configured such that the green channel is sampled at every other
pixel. The green samples are staggered by one pixel in adjacent
rows, and blue and red channels are used in alternate rows to com-
plete the mosaic. In [2], the inventors describe an array pattern
that addresses the problem of saturation in the green channel of
the Bayer array. This array has alternating green and luminance
samples in a row adjacent to alternating red, luminance and blue
samples, and improves color reproduction at the cost of spatial res-
olution. The inventors in [3] address saturation issues and propose
an array that contains luminance samples in addition to the color
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Fig. 1. The Bayer Array

primaries red, green, and blue. Hamilton et al. in [4] propose a
CFA that uses the subtractive primaries cyan, magenta, and yellow
in addition to green filters to address the issue of photon acquisi-
tion in low-light conditions. The authors in [5] propose a CFA pat-
tern based on random arrays derived from a blue noise pattern in an
attempt to reduce aliasing artifacts that result from high-frequency
periodic patterns in the image.

In this paper, we propose a design methodology for selecting
color samples in an RGB CFA. We use a simple model of the hu-
man visual system to characterize the perceptual error in an image
reconstructed from a sub-sampled CFA. A sequential algorithm is
used to select samples that minimize an error criterion that incor-
porates the effect of the human visual model.

2. MATHEMATICAL MODEL

We model the sub-sampled image as a linear transformation that
maps the full-color image to an image that contains only one color
value at a particular pixel location. The sub-sampled image is rep-
resented as

yi = Aixi + ui, i = Red, Green, Blue, (1)

where xi, (mn × 1) and yi, (mn × 1) are the Red, Green and
Blue channels of the original and the sub-sampled m × n images
arranged in a column-ordered form, and ui, (mn × 1), are the
similarly arranged noise terms. The matrices Ai are the sampling
matrices. For the fully-sampled case, Ai are identical to the mn×
mn identity matrix. For the sub-sampled case, the matrices Ai

contain only the rows corresponding to a sampled pixel location.
We assume that the image and noise are uncorrelated.

We form a regularization functional for each channel that con-
tains an energy bound on the residual Aix − yi and a penalty on
the roughness as:

Φi = ‖Aixi − yi‖2
2

+ µiLixi
2
. (2)
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The estimate of xi found on minimizing the constrained least squares
problem in (2) is

x̂i = (AH
i Ai + µiL

H
i Li)

−1
A

H
i yi, (3)

where AH is the Hermitian transpose of A.
The appearance of the reconstructed image depends funda-

mentally on the characteristics of the human visual system (HVS).
Color and spatial variances in the image are processed by the HVS
to give the perceived image. This motivates the use of an HVS
model to evaluate the performance of color image reconstruction.
The next section elaborates on the HVS model used in this treat-
ment.

To obtain the best estimate for the perceived image, we min-
imize the discrepancy in the reconstructed image when viewed
through the HVS. Let the matrices Hi, i = Red, Green, Blue, rep-
resent the filtering effect corresponding to the point spread func-
tions (PSFs) of the red, green and blue channels of the HVS respec-
tively. We form a discrepancy function for one channel (dropping
the subscript) as

d = E{‖Hx − Hx̂‖2
2
}, (4)

where E{.} represents Expectation, and ‖.‖
2

denotes the Frobe-
nius matrix norm.

d = E
{
‖Hx − H(AH

A + µL
H

L)−1
A

H
Ax‖2

2

}
+ E

{
‖H(AH

A + µL
H

L)−1
A

H
n‖2

2

}
= E

{
‖H(AH

A + µL
H

L)−1
µL

H
Lx‖2

2

}
+ E

{
‖H(AH

A + µL
H

L)−1
A

H
n‖2

2

}
. (5)

Let P = (AHA + µLHL), such that

d = E
{
‖HP

−1
µL

H
Lx‖2

2

}
+ E

{
‖HP

−1
A

H
n‖2

2

}
. (6)

Now, E{‖HP−1AHn‖2
2
}

= E
{

tr
(
n

H
AP

−H
H

H
HP

−1
A

H
n
)}

= tr
(
E

{
AP

−H
H

H
HP

−1
A

H
nn

H
})

= tr
(
AP

−H
H

H
HP

−1
A

H
Rn

)
, (7)

where Rn is the correlation matrix for n and is described by the re-
lation Rn = E

{
nnH

}
. We assume that the noise is independent,

identically distributed such that Rn = µI . Also, P is symmetric
and P H = P . Thus, Eq. (7) reduces to

E
{
‖HP

−1
A

H
n‖2

2

}
= µ tr

(
AP

−1
H

H
HP

−1
A

H
)

. (8)

Also, E
{‖HP−1µLHLx‖2

2

}
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, (9)

where Rx is the correlation matrix for x and is described by the
relation Rx = E

{
xxH

}
. From Eqs. (8) and (9), we have

d = µ tr
(
P

−1
H

H
HP

−1
(
A

H
A + µL

H
LRxL

H
L

))
. (10)

For L = R
−

1

2
x , LHL = R−1

x , and Eq. (10) reduces to

d = µ tr
(
P

−1
H

H
H

)
. (11)

We define an error function as a weighted sum of the channel
discrepancy functions as

e =
∑

i

κidi = κi

∑
µi tr

(
(AH

i Ai + µiR
−1
xi

)−1
H

H
i Hi

)
, (12)

where κi are scaling factors that reflect the perceptual importance
of the fidelity in a particular channel.

3. HUMAN COLOR VISION MODEL

The image processing flow for an image captured with a digital
camera and viewed by an observer has multiple steps. To get an
accurate description of the perceived image, the PSFs of the de-
mosaicking process and the HVS must be known precisely. In this
treatment, the authors use a rudimentary model for the PSFs of
the three color channels based on a functional model of the low-
contrast photopic modulation transfer function (MTF) of the HVS
described by Sullivan et al. in [6]. We suppose that the MTF of
the entire work-flow of the digital camera retains the dominating
characteristics of the HVS in that:

1. it is more sensitive to spatial frequencies in the vertical and
horizontal directions, and

2. the response of chrominance channels falls faster than the
response of the luminance channel.

We also also assume that the green channel corresponds closely
to the luminance response. Thus, this work does not rely on an
exhaustive and precise human color vision model pertaining to the
RGB space but uses a simple model as an example to propose for
the problem of sample selection. The matrices Hi introduced in
Section 2 represent the response of the entire chain.

The MTF of the green channel is obtained from the MTF as
described by Sullivan as

VGij =

{
a(b + cf̄ij) exp

(
− (

cf̄ij

)d
)

, if f̄ij > fmax

1.0, otherwise,
(13)

where the constants a, b, c, and d are calculated from empirical
data to be 2.2, 0.192, 0.114 and 1.1 respectively; f̄ij is the radial
spatial frequency in cycles/degree as subtended by the image on
the human eye scaled for the viewing distance, and fmax is the
frequency corresponding to the peak of Vij . Since we need the
MTF in terms of discrete linear frequencies along the vertical and
horizontal directions (fi, fj), we must express (fi, fj) in terms of
the radial frequency f̄ij .

The discrete frequencies along the horizontal and vertical di-
rections depend on the pixel pitch ∆ of the output device (print or
display device) and the total number of frequencies M . A location

III - 474

➡ ➡



(i, j) in the frequency domain corresponds to the following fi and
fj in cycles/mm:

fi =
i − 1

∆M
,

fj =
j − 1

∆M
. (14)

The linear frequencies are scaled for the viewing distance s and
converted to radial frequency as

fij =
π

180 arcsin

(
1√

1+s2

)√
f2

i + f2
j . (15)

The MTF is not uniform along all directions. The HVS is most
sensitive to spatial variation along the horizontal and vertical di-
rections. To account for this variation, the MTF is normalized by
an angle dependent function s(θij) such that

f̄ij =
fij

s(θij)
, (16)

where

s(θij) =
1 − w

2
cos(4θij) +

1 + w

2
, (17)

with w being a symmetry parameter and

θij = arctan

(
fj

fi

)
. (18)

The response obtained for the green channel for w = 0.7, and
a viewing distance of 45 cm and a pixel pitch of 0.27 mm is shown
in Fig. 2.
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Fig. 2. HVS green channel MTF

The response of the HVS to chrominance, or the contrast sen-
sitivity to spatial variations in the chrominance channels, falls off
faster than the response to the luminance channel. A simple chromi-
nance response model corresponding to a decaying exponential is
chosen as a basis for the HVS response to the blue and red chan-
nels. The red and blue channel response is modelled as

VB,R(fij) = e
(−0.15fij)

, (19)
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Fig. 3. HVS red and blue channel MTFs

The response obtained for the red and blue channels is shown in
Fig. 3.

The HVS point spread functions hi for i = Red, Green, Blue
are obtained as

hG = F
−1 {VG(i, j)} ,

hR,B = F
−1 {VR,B(i, j)} . (20)

The matrices Hi are constructed from hi such that multiplication
of a column-ordered image by Hi yields the 2-D convolution of
the image by the point spread function hi.

4. SAMPLING STRATEGY

The goal is to sample only one color channel at each sample lo-
cation. Thus, we have to select mn samples from a set of 3mn
samples. The error criterion defined in (12) may be used to opti-
mize the selection procedure. The criterion does not depend on the
scene being imaged and may be used for sub-sampling a general
scene if the statistical properties (Rx and Rn) of the fully sampled
image are defined accurately.

Each row in the matrices Ai in (12) corresponds to a sample
in the respective channel. The error criterion defined in (12) may
be used to obtain the row that when eliminated would cause the
least error in the reconstructed signal when viewed through the
HVS. An exhaustive optimization would require the computation
of the error criterion for all combinations of eliminated rows, and
would require (3mn)!

(2mn)! (mn)!
computations of the error criterion. For

a reasonably sized array, this computation would require immense
resources.

The authors in [7] use a greedy algorithm for sequential back-
ward selection (SBS) of samples for signal reconstruction. The
sequential backward selection algorithm can not be guaranteed to
provide optimal results, but the authors in [8] have shown that the
algorithm consistently provides good results with a relatively tight
upper bound on the error criterion. We devise an SBS scheme for
optimizing the criterion as follows. We start with a fully sampled
image with all mn samples in each channel. The error criterion is
computed after eliminating one row from one of the matrices Ai,
and the row that gives the least value for the criterion is eliminated.
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In the next step, The matrix Ai from which the row is eliminated
is of dimension (m−1)×n. The error criterion is computed again
after eliminating one row from Ai, and rows of Ai are successively
eliminated with the constraint that the three channels are sampled
in a mutually exclusive manner.

Computation of the error criterion requires the computation
of the inverse of the matrix P for each eliminated row. For an
m × n array, P is of dimension mn × mn, and the inversion
requires considerable computation even for small arrays. The er-
ror criterion may be simplified using the Sherman-Morrison ma-
trix inversion formula such that we need find only an update term
after each elimination. Also, the matrices Hi are circulant block-
circulant and the matrix products involving Hi may be computed
using DFTs. In spite of these simplifications, the computation of
the criterion is cumbersome since in the form of (12), it requires
the storage of at least the three mn × mn initial matrices P−1

i .

5. EXPERIMENTS

The power spectral density of a random process is given by the
Wiener-Khinchine relation, Sx(jω) = F{Rx}. We obtained an
Rx representative of a general scene imaged by a digital camera
from the mean, Savg , of the power spectrums of a large number
of images reflecting various image types as Rx = F

−1{Savg}.
The images used to obtain Savg span a wide range of categories
including natural scenes, landscapes, portraits, and a few color test
images obtained from the USC-SIPI image database available at
http://sipi.usc.edu/services/database/Database.html.

The sample selection procedure detailed in Section 4 was ap-
plied for fully-sampled RGB arrays of different sizes. The error
criterion values obtained for a Bayer array (e

Bayer
) and an ar-

ray obtained by the SBS scheme (e
SBS

) detailed in Sec. 4 are
shown in Table 1. The weights on the individual channel errors are
κ

Red
= 1, κ

Green
= 1.6, and κ

Blue
= 1. The values of κi reflect

the relative importance of the Green channel on image quality and
precise values may be obtained through psychovisual experiments.
An 8 × 8 array obtained using SBS is shown in Fig. 4.

Table 1. Comparison of error criterion values with a Bayer array
Array size e

Bayer
e

SBS

8 × 8 28.8083 27.5952
12 × 12 46.0583 44.3362
16 × 16 74.9760 72.3530
32 × 32 218.4921 211.1279

6. CONCLUSIONS

In this paper we have devised a perceptually based sample selec-
tion procedure for CFAs. We have derived an error criterion that
assumes reconstruction of the sub-sampled array via regulariza-
tion. The criterion incorporates a simple model of the HVS color
response to characterize the effect of the HVS in deciding the per-
ceived quality of the reconstructed image. A sequential algorithm
was proposed that optimizes the above criterion in the process of
sample selection. Experimental results indicate that this procedure
effectively selects sampling arrangements that give lower values
of error as compared to the Bayer array. The methodology de-
scribed in this paper is expected to yield better results in terms of
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Fig. 4. An 8 × 8 array

the MSE in a perceptually uniform color space between a recon-
structed sub-sampled image and a fully-sampled image if a more
accurate characterization of the HVS response to color were used.
Further research will be directed in this area.
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