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ABSTRACT

A segmentation algorithm for image content analysis is
presented. We assume that the textures in a video scene
can be labeled subjectively relevant or irrelevant. Relevant
textures are defined as containing subjectively meaningful
details, while irrelevant textures can be seen as image
content with less important subjective details. We apply
this idea to video coding using a texture analyzer and a
texture synthesizer. The texture analyzer (encoder side)
identifies the texture regions with unimportant subjective
details and generates side information for the texture
synthesizer (decoder side), which in turn inserts synthetic
textures at the specified locations. The focus of this paper
is the texture analyzer, which uses multiple MPEG-7
descriptors simultaneously for similarity estimation. The
texture analyzer is based on a split and merge
segmentation approach. Its current implementation yields
an identification rate of up to 96% and an average gain of
up to 10% compared to single descriptor usage.

1. INTRODUCTION

Textures like water, grass, trees, sand, etc. that are present
in many video sequences are difficult to code due to the
large amount of visible detail. We claim that the exact
regeneration of such textures is not necessary if they are
shown with limited spatial resolution and the original
video is not known to the viewer . The viewer should just
be able to identify the semantic category of the
reconstructed textures, which is often not the case when a
pre-filter is used or these are blurred due to strong
quantization. We exploit this idea for video coding using a
texture analyzer at the encoder side and a texture
synthesizer at the decoder side.

The identification of detail-irrelevant texture regions
(water, sand ...), the creation of coarse masks
corresponding to these regions, as well as the signaling of
these masks as side information to the decoder are the
main tasks of the texture analyzer. The texture synthesizer
replaces the marked textures via inserting synthetic
textures.

In [1] it is shown that detail-irrelevant textures can be
represented using MPEG-7 descriptors [2],[3], instead of
the mean squared error, as the coding distortion. Since the

0-7803-8484-9/04/$20.00 ©2004 IEEE

IIT - 453

considered MPEG-7 descriptors evaluate overall
similarity, the reproduced textures typically show different
details than the original ones. These deviations between
original and synthetic textures are not subjectively
noticeable as long as the displayed spatial accuracy of the
textures remains unchanged and are also much less
annoying as if they were coded at a bit-rate which is
equivalent to the bit-rate of the side information of the
texture synthesizer. In [1], we show that substantial bit-
rate savings can be achieved using our coding approach.
The gains thereby increase with increasing video quality.
E.g., bit-rate savings of up to 19.4% compared to an
H.264/AVC video codec were measured for the
Flowergarden test sequence (CIF resolution, 30 Hz
progressive video and quantization parameter 16).

In this paper, we focus on the texture analyzer. Its
segmentation strategy, the selected MPEG-7 descriptors
for similarity estimation as well as the corresponding
metrics and weighting strategies are developed.

A similar wavelet-based analysis-synthesis video
coding approach was introduced by Yoon and Adelson [4]
and by Dumitras and Haskell [5]. The algorithms
presented in [4],[5] are optimized for textures with absent
or very slow global motion, whereas no such constraint is
required for our system [1].

The remainder of the paper is organized as follows. In
Section 2, we present the segmentation strategy of the
texture analyzer. Finally, in Section 3 the experimental
results are shown.

2. SEGMENTATION STRATEGY

The texture analyzer performs a split and merge
segmentation of each frame of a given video sequence.
This corresponds to a region-based segmentation for
coarse detection of true regions [6].

2.1. Splitting step

The splitting step consists in analyzing a frame using a
multi-resolution quadtree [7]. The latter encompasses
several levels, the first level (level 0) being the original
frame itself. At level 1, the original frame is split into 4
non-overlapping blocks, while it is split into 16 non-
overlapping blocks at level 2, etc. The amount of blocks at
level L is given by 4". Each block at level L-1 is split into
four blocks at level L, since the amount of blocks per
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column is always identical to the amount of blocks per row
(e.g. four blocks per row/column at level 2).

A Dblock at level L-1 1is considered to have
homogeneous content if its four sub-blocks at level L have
“similar” statistical properties. An optional auxiliary
requirement for  homogeneity s that  the
(2n+1)x(2n+1) non-overlapping sub-blocks (ne N)
of the considered block (level L-1) are pairwise similar.
This additional condition allows better detection of details
at block boundaries as well as in the middle of blocks. The
similarity between two blocks is measured in terms of
corresponding MPEG-7 descriptors as explained below.
Inhomogeneous  blocks are split further, while
homogeneous blocks remain unchanged. The splitting
stops, when the smallest allowed block size is reached, and
the non-homogeneous areas of the considered frame are
marked as being not classified. The smallest allowed block
size can be set according to a priori knowledge concerning
the size of the structures in the given video sequence.

The segmentation mask obtained after the splitting step
typically shows a clearly over-segmented frame. Thus
post-processing of the former is required, which leads to
the second step implemented by the texture analyzer - the
merging step.

2.2. Merging step

In the merging step, homogeneous blocks identified in the
splitting step are compared pairwise and similar blocks are
merged into a single cluster forming an homogeneous area
itself. The merging stops if the obtained clusters are stable,
i.e. if they are pairwise dissimilar. Typically the final
number of clusters is considerably reduced by the merging
step.

In addition to merging homogeneous texture regions,
the corresponding MPEG-7 feature vectors can also be
updated, which is an optional feature of the texture
analyzer. Thus the merging of similar homogeneous
texture regions can be taken into account in the feature
space. If this feature is switched off, no feature vector
update is done in case of the merging of two homogeneous
texture regions.

2.3. Similarity estimation

The similarity assessment between two blocks is done
based on MPEG-7 descriptors [2],[3]. We use the "Edge
Histogram” (EH) texture and the “SCalable Color” (SCC)
descriptors. These features have initially been developed
for visual content representation with the main target being
image retrieval.

2.3.1. Edge Histogram descriptor

The EH descriptor represents the spatial distribution of
four directional edges (one horizontal, one vertical, and
two diagonal edges) and one non-directional edge for 16
local, non-overlapping regions of a given image. The
frequency of occurrence of each edge class is determined
for each local region, which yields an 80 (16x5)
dimensional feature vector.

We also use a global EH descriptor that can easily be
derived from the MPEG-7 standard conforming EH
descriptor described above. The global EH is of dimension

five and represents an edge-class-wise addition of the 16
local histograms.

2.3.2. SCalable Color descriptor

The SCC descriptor is basically a color histogram in the
HSV color space. HSV is a three-dimensional color space
with the components Hue, Saturation and Value
(luminance). The resolution (number of colors or bins) of
the SCC descriptor can be varied from 16 to 256 colors.
The number of possible colors is thereby doubled from
resolution step to resolution step. We use the highest
resolution step in order to achieve best possible
segmentation results given the SCC descriptor.

The MPEG-7 standard conforming SCC histogram
described above consists of 16 hues. Each hue has four
corresponding saturation levels per given luminance value,
which yields 64 bins per luminance value. Four luminance
values are used in the reference SCC histogram, which

leads to a total of 256 bins. If HSS represents a color with

quantized hue h (h = 0...15) at quantized saturation s
(s=0..3) and quantized value v (v=0...3), then the
colors in the reference SCC histogram are sorted in the
following order:

Hgo' ’ 'Hg3 H{lo' ’ 'H{B H}210' ’ 'Hg3 Hgo' ’ 'H513'

The reference SCC descriptor was modified to achieve
better segmentation results for images with varying
saturations or luminance values of the same hue. The
modifications consist in re-ordering the bins of the
MPEG - 7 standard conforming SCC histogram, i.e. the
dimension of the SCC histogram is not altered. The colors
in the re-ordered SCC histogram are sorted in the
following manner:

Hgo"'H83H(1)3"'H?ngo"'H(z)3 Hg3"'Hgo"'H§0 H;%H%)f)
As can be seen above, the re-ordering yields storing all
variations of a given hue h in neighboring bins.

The re-ordering has a positive impact on the
segmentation results for textures with varying saturations
or/and luminance values of the same hue and given an
adequate metric. The same applies to the reference SCC
histogram for textures with varying hues and constant
luminance and saturation.

2.3.3. Merging Edge Histogram and SCalable Color

The detection of detail-irrelevant textures can be
optimized by using both, the SCC and EH descriptors, for
similarity assessment. The relevance of the decisions made
by the above features depends on the content of the blocks
to be examined. We use two weighting strategies to
determine the relevance of each feature for content
analysis of the four sub-blocks of a given block (cp.
Section 2.1.).

The first weighting approach is based on the
dynamic weighting mechanism described in [8]. It assumes
that the feature with the highest variance in the feature
space is more likely to lead to the best homogeneity
decision. The feature weights are determined as follows:

G- — 1 2 3 1 2 3 _
w==1;d= ZZdU; c=g22dij-d‘ (1)

d 6 i-0 j=i+1 i=0 j=i+l
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where w represents the weight of the considered feature. d
is the mean distance between the feature vectors of sub-
blocks i and sub-blocks j. The sub-blocks are numbered
increasingly from left to right and from top to bottom
starting with zero. ¢ represents the mean deviation from

the mean distance d . The mean relevance index I of the

considered features is determined for the four given sub-
blocks. We use saturation for SCC and the detected edge
type for EH. I.e. EH is considered to be relevant (I=1) if
more than only non-directional edges are seen (I=0 else),
as non-directional edges are non-specific. The determined
weights are normalized by the total sum of weights.

The second weighting approach is not variance-based
and uses the normalized relevance indexes as weights.

2.3.4. Thresholds and metrics

Two blocks are considered to be similar if the distance
between the corresponding feature vectors lies below a
given threshold. In case of combined use of SCC and EH,
the overall distance between two blocks is given by the
weighted sum of the single distances:

Wseedsce * Wenden < WseeTsce + Wen Ten @
where dsccrn represent the distances between the feature
vectors of the considered blocks, while Tgccpn and
Wscoen are the corresponding similarity thresholds and
weights respectively. The thresholds are determined as a
proportion of the maximum possible distance between two
feature vectors. The maximum distance depends both on
the selected metric and the chosen descriptor. A threshold
of zero means that two feature vectors are seen as similar
if and only if they are identical, while a threshold of one
indicates that any two feature vectors will be seen as
similar, as no distance can be greater than the maximum
one.

Two metrics are used to determine the distance
between feature vectors: the ¢, norm (EH, SCC) and the
Earth Mover’s Distance [9] (SbC only). If we define the
bin population of the first of two histograms as hills and
the corresponding population of the second histogram as
valleys, then EMD represents the minimum “earth”
transportation cost from the hills to the valleys. The
greater the distance between provider (histogram #1) and
receiver bin (histogram #2), the higher the transportation
costs. Histograms with different locations of most of the
“earth” concentration will be labeled as very different,
while histograms with similar shapes and noisy deviations
will be seen as similar. EMD is robust against noise,
scaling and shift because it mainly compares the shapes of
the histograms. This makes EMD eligible for
compensating lighting variations, when wused in
combination with the SCC descriptor.

3. EXPERIMENTAL RESULTS

In our experiment, we evaluate the quality of the
segmentation results obtained using the texture analyzer in
combination with SCC and EH. A test set of 51 images is
used. 15 of the images are gray-level images and are used
only for evaluation of EH. For each image, a reference
mask is manually generated by first splitting the former
into 16x16 non-overlapping macroblocks. The macroblock
grid is thereby imposed by the coding scenario [10].

Macroblocks containing a homogeneous texture are
marked “classifiable”, while the others are labeled
“unclassifiable”. The “classifiable” blocks are then
manually clustered and those containing the same
homogeneous texture are assigned to the same class. The
reference masks are then compared to the best masks
generated by the texture analyzer. The best mask, i.e. the
mask with the least segmentation errors, for a given
texture analyzer configuration is obtained by varying the
similarity thresholds (cp. Section 2.3.4.) using a fixed step
width, thereby minimizing segmentation errors.

3.1. SCalable Color descriptor

The evaluation of the SCalable Color descriptor is done
using a total of 36 images selected in consideration of the
lighting conditions, the presence/absence of details in the
images (useful for evaluation of detail identification
potentialities of the texture analyzer) and a “good”
coverage of the HSV color space. The most important
configurations of the texture analyzer in combination with
SCC are shown in Tab. 1. SCC_RO represents the re-
ordered version of the reference SCC histogram (cp.
Section 2.3.2.).

Descriptor | Metric Update Detail

after Identi-

mergin, fication
Config. #1 SCC EMD No Yes
Config. #2 SCC EMD No No
Config. #3 SCC EMD Yes No
Config. #4 SCC RO | EMD No No
Config. #5 SCC RO [ EMD Yes No
Config. #6 SCC RO [ No Yes
Config. #7 SCC RO |1 No No

Tab. 1: Evaluated configurations of the texture analyzer in
combination with the ,,SCalable Color* descriptor

Figure 1 depicts the correctly identified image area for
the evaluated configurations of the texture analyzer. The
strongly overlapping notches of the box plots indicate that
none of the evaluated configurations is statistically
significantly better than the others. Configurations #2 and
#3 yield the best average texture identification rate of 71%
(median value, horizontal line within the corresponding
boxes) given the test data. The configurations with EMD
(configs. #1 to #5) as the metric lead to the best results as
expected (cp. Sections 2.3.2. and 2.3.4.).

Area [%]

>

3 4
Config. #

Figure 1: Correctly identified image area for seven
configurations of the texture analyzer in combination with
the ,,SCalable Color* descriptor

Less than 25% of the test images lead to a correctly
identified image area smaller than 37% (lower quartile
corresponds to lower bound of the box), whereas more
than 80% of the image area is correctly segmented for
more than 25% of the test images (upper quartile
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corresponds to upper bound of the box) for configurations
#2 and #3. The whiskers drawn from the lower (upper)
quartile to the smallest (biggest) correctly identified area
cover the range of the data.

Within the false segmentation class, we distinguish
between false negatives and false positives. False
negatives are image areas that are marked “classifiable” in
the reference mask and labeled “unclassifiable” in the best
texture analyzer mask, while false positives correspond to
the other possible mismatches. Considering only the false
positive macroblocks as erroneous leads to an average
non-erroneous identified area of 99.64%.

3.2. Edge Histogram descriptor

The evaluation of the Edge Histogram descriptor is done
using 21 images selected in consideration of the texture
resolution, orientation and coarseness. The most important
configurations of the texture analyzer in combination with
EH are shown in Tab. 2. EH GL represents the global
version of the reference EH descriptor (cp. Section 2.3.1.).
Note that the ¢, norm is used for all configurations as
recommended in the MPEG-7 standard [2],[3].

Descriptor Metric Update Detail
after Identi-
merging fication
Config. #1 EH I No Yes
Config. #2 EH I No No
Config. #3 EH I Yes Yes
Config. #4 EH I Yes No
Config. #5 EH GL I No Yes
Config. #6 EH GL I No No

Tab. 2: Evaluated configurations of the texture analyzer in
combination with the ,,Edge Histogram* descriptor

Figure 2 depicts the correctly identified image area for
the evaluated configurations of the texture analyzer.
Configuration #6 leads to significantly better results than
the others.

1
0.9
0.8
0.7

T os

Figure 2: Correctly identified image area for six
configurations of the texture analyzer in combination with
the ,,Edge Histogram* descriptor

An average identification rate of 62.5% can be measured
here. Considering only the false positive macroblocks as
erroneous leads to an average non-erroneous identified
area of 96.5%.

3.3. Merging of SCalable Color and Edge Histogram

The merging of the SCalable Color and Edge Histogram
descriptors is evaluated using a total of 36 images (cp.
Section 3.1.). Configurations #2 and #6 are used for SCC
and EH respectively (cp. Sections 3.1. and 3.2.).

Figure 3 shows the correctly identified image area for
both weighting approaches (cp. Section 2.3.3.) and the

best texture analyzer configuration in combination with
SCC. It can be seen that both weighting strategies yield
better results than configuration #2 of SCC. However, the
weighting mechanism that is not based on variance leads
to the best results. An average identification rate of 81%
can be measured here, which corresponds to a gain of 10%
compared to configuration #2 of SCC.

2
Config. #

Figure 3: Correctly identified image area for the variance-
based (left) and the not variance-based (middle) weighting
strategies as well as for configuration #2 of the ,,SCalable
Color* descriptor (right)

Considering only the false positive macroblocks as
erroneous leads to an average non-erroneous identified
area of 96%.

4. CONCLUSIONS

We have presented a segmentation algorithm for image
content analysis. Two MPEG-7 descriptors, a texture
(Edge Histogram) and a color descriptor (SCalable Color),
are merged for similarity estimation. Our experiments
show that the average texture identification rate increases
by up to 10% for the best weighting strategy compared to
the best single descriptor. Further weighting strategies will
be explored in order to improve the homogeneous texture
identification performance.

5. REFERENCES

[1] P. Ndjiki-Nya, et al., “Improved H.264 Coding Using Tex-ture
Analysis and Synthesis”, Proc. ICIP 2003, Barcelona, Spain, September
2003.

[2] ISO/IEC JTC1/SC29/WGI11/N4362, “MPEG-7 Visual Part of
eXperimentation Model Version 11.0”, Sydney, Australia, July 2001.

[3] ISO/IEC JTC1/SC29/WG11/N4358, “Text of ISO/IEC 15938-
3/FDIS Information technology — Multimedia content description
interface — Part 3 Visual”, Sydney, Australia, July 2001.

[4] S.-Y. Yoon and E. H. Adelson, “Subband texture synthesis for image
coding”, Proc. SPIE on HVEI III, Vol. 3299, pp. 489-497, San Jose,
USA, January 1998.

[5] A. Dumitras and B. G. Haskell, “An Encoder-Decoder Texture
Replacement Method with Application to Content-based Movie
Coding”, To be published in IEEE Trans. on CSVT.

[6] J. Freixenet, et al., “Yet Another Survey on Image Segmentation :
Region and Boundary Information Integration”, Proc. ECCV, Part IlI,
Vol. 2352, pp. 408-22, Copenhagen, Denmark, May 2002.

[7] J. Malki, et al., “Region Queries without Segmentation for Image
Retrieval by Content”, VISUAL'99, pp.115-22, 1999.

[8] Y. Luo, et al., “Extracting meaningful regions for content-based
retrieval of image and video”, VCIP 2001, Vol. 4310, pp. 455-464, San
Jose, USA, January 2001.

[9]1 Y. Rubner, et al., “A Metric for Distributions with Applications to
Image Databases”, ICCV’98, pp.207-214, 1998.

[10] ITU-T Rec. H.264 & ISO/IEC 14496-10 AVC, "Advanced Video
Coding for Generic Audiovisual Services", 2003.

IIT - 456

I 2



