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ABSTRACT

In recent years, relevance feedback has been widely
used to improve the performance of content-based image
retrieval. How to select a subset of features from a large-
scale feature pool and to construct a suitable dissimilarity
measure are key steps in a relevance feedback system.
Biased discriminant analysis has been proposed to select
features during relevance feedback iterations. However, to
solve the BDA, we often encounter the matrix singular
problem. In this paper, we propose a kernel-based
discriminant analysis, which can overcome the matrix
singular problem. The new method is shown to outperform
the traditional kernel BDA and constrained support vector
machine based relevance feedback algorithms.

1. INTRODUCTION

With the explosive increase of the amount of image
records on the Internet and the rapid advance of computer
technology, retrieving images from a large-scale image
database based on visual features become one of the most
active research fields [1-3] in multimedia information
processing. In recent years, relevance feedback (RF) [4-6]
has been shown to be an efficient technique to improve the
performance of content-based image retrieval (CBIR)
system.

Kernel biased discriminant analysis (KBDA) [7] has
been used for RF mainly because it handles the positive
and negative feedbacks separately. However, KBDA often
suffers the matrix singular problem (MSP). To avoid MSP,
the regularization method [8] adds small quantities to the
diagonal of the scatter matrices.  This apparently is not an
optimal solution and sometimes it may lead to an ill-posed
problem, which limits the performance of RF.

Recently, direct linear discriminant analysis (DLDA)
[9] was proposed to solve MSP in face recognition. DLDA
discards the null space of between-class scatter matrix,
which does not contain much discriminant information.
Then the discriminant vectors are the within-class scatter
matrix’s eigenvectors with smallest eigenvalues. The
successes of the kernel-machine [10] based pattern
classification algorithms have motivated us to generalize

the idea of DLDA to BDA in the kernel feature space. We
first project all the training samples from the input feature
space to kernel feature space, and then the null-space of
“the negative scatter with respect to positive centroid”
matrix is removed. At last, the discriminant vectors are
extracted as “the positive within class scatter” matrix’s
eigenvectors with the smallest eigenvalues.

2. REVIEW OF KBDA AND DLDA

The proposed algorithm combines the merits of KBDA
and DLDA. We briefly review them first.

2.1. Kernel Biased Discriminant Analysis

KBDA [7] tries to find the subspace to discriminate the
positive and negative samples in the kernel space. It is
spanned by a set of vectors { }m

kkw 1==W , which maximize

the ratio between the positive covariance matrix φ
xS  and

the biased matrix φ
yS . W can be obtained by solving the

following general eigenvalue problem:
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xöxö  is the centroid of the positive

samples in kernel space, ix  and iy  are the positive and

negative feedback samples respectively, xN  and yN  are

the number of positive and negative feedback samples
respectively, and ϕ  is the kernel mapping function [10].

2.2. Direct Linear Discriminant Analysis

Linear discriminant analysis (LDA) [8] tries to find the
subspace W , which maximizes the ratio between the
between-class scatter matrix bS and the within-class scatter

matrix wS ,
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Let the training set contains c individual classes and
each class iC  has iN  samples. Then wS  and bS  are

defined as,
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where ∑=
=
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xm  is the mean vector of the whole

training set, ∑=
=
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xm  is the mean vector for the

individual class iC , and i
jx  is the sample belonging to

class iC . W  can be computed from the eigenvectors of

bw SS 1− .

To avoid MSP in LDA, DLDA and its kernel version
were proposed in [9] and [11]. It accepts high-dimensional
data as the input, and optimizes LDA directly, without any
dimension reduction step, so it takes all the information
within and outside of the null space of wS . In DLDA, bS

is first diagonalized, and the null space of bS  is removed,

0>= bb
T DYSY                                             (5)

where Y  are eigenvectors and bD  are the corresponding

non-zero eigenvalues of bS . wS  is transformed to
2/12/1 −−= bw

T
bw YDSYDK                                   (6)

wK  is diagonalized by eigenanalysis,

ww
T DUKU = .                                               (7)

The LDA transformation matrix for classification is then
defined as,

2/12/1 −−= wb UDYDW .                                        (8)

3. KERNEL DIRECT BDA

Before we derive the kernel direct biased discriminant
analysis (KDBDA), we first introduce the kernel matrix
K , because all the derived formulas are related to K ,
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Just like DLDA, we begin the KDBDA with the analysis
of φ

yS . Because the dimension of yÖ  can be infinite, it is

impossible to calculate φ
yS  and perform eigenanalysis to

φ
yS  directly. However, it can be avoid according to:
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where U  is the none-zero subspace (not normalized) of
T
yyÖÖ . The dimension of y

T
yÖÖ  is yN , and y

T
yÖÖ  is:
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where 1,Nx1  is a column vector with all elements equal to

one.
So we can express y

T
yÖÖ  in terms of the elements of

K as:
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where 1,1, Nxxx

T
Nx 1K1=α , and NxNx ,1  is a matrix with all

elements equal to one.
The prime subspace E of y

T
yÖÖ is preserved, and that is

0≠= yy
T
y

T DEÖÖE . According to (10), we can obtain the

diagonalized none-zero subspace 1
y y

−=W Ö ED  of T
yyÖÖ ,

i.e. 0≠WSW φ
y

T . To obtain the most discriminant

directions, the “positive with-in class scatter” matrix is
projected into the none-zero space:

11 −−= yyx
T
y

T
yx

T EDÖSÖEDWSW φφ .                      (12)

So yx
T
y ÖSÖ φ  should be derived first:
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According to (13), to calculate yx
T
y ÖSÖ φ , we only need
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According to (13), yx
T
y ÖSÖ φ can be expressed as:
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Under the idea of DLDA, we do the eigenanalysis of
11 −−= yyx

T
y

T
yx EDÖSÖEDS φφ

�

, and the eigenvectors V of φ
xS
�

with the smallest eigenvalues xD  selected, i.e.

xx
T DVSV =φ
�

.                                                      (15)

So the kernel projection matrix is 2/11 −−= xy VDEDH .

Obviously, it is possible that some diagonal values in
the matrix xD  is zero, which means that 2/1−

xD  does not

exist. However, we can avoid the zero eigenvalue problem
based on a modified KBDA criterion, as similarly
analyzed in [12]. The modified KBDA criterion is:
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It is clear that the modified criterion is equivalent to the
original KBDA criterion according to the proof in [12].
Now the singular value problem can be avoided because

y
φ =TW S W I .

With the optimal discriminant directions, which are
drawn from the previous derivations, the projection of a
new pattern z to H  is given by:
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So the steps of KDBDA can be summarized as follows:

a. Calculate the kernel matrix K  according to (9).
b. Calculate y

T
yÖÖ  according to (11).

c. Extract the prime subspace of y
T
yÖÖ  by eigenanalysis.

Then E  is extracted to satisfy 0≠= yy
T
y

T DEÖÖE .

d. Calculate yx
T
y ÖSÖ φ  according to (14).

e. With the modified KBDA criterion, select eigenvectors
V  of 11 −−= yyx

T
y

T
yx EDÖSÖEDS φφ

�

 with the smallest eigen-

values xD  by eigenanalysis.

f. Calculate the kernel projection matrix 2/11 −−= xy VDEDH .

g. For a given pattern, the KDBDA transformation is:
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4. EXPERIMENTS

4.1. The Image Retrieval System

To evaluate the performance of the proposed algorithm,
we have designed the QueryGo image retrieval system.
The user interface is shown in Fig 1.

Figure 1. User interface of the proposed system.

In QueryGo, three main features, color, texture, and
shape, are extracted and used to represent the
corresponding image. For color, we select the color
histogram [13] in HSV color space to represent the color
information of an image. Here, the color histogram is
quantized into 256 levels. Hue, Saturation and Value are
quantized into 8, 8, and 4 bins respectively. Texture is
extracted from Y component in YCrCb space by
pyramidal wavelet transform (PWT) with Haar wavelet.
The mean value and standard deviation are calculated in
the sub-bands of each decomposed level. The feature
length is 342 ×× . Edge histogram [14] is also calculated on
Y component in YCrCb color space. Edges are grouped
into four categories, which are horizontal, 45 diagonal,
vertical, and 135 diagonal. From the edge histogram, we
can get a four-dimension shape feature for image retrieval.
Each feature is sensitive to a particular property of the
content of an image. We combine the color, texture, and
shape features into a feature vector, and then we normalize
each feature into a normal distribution.

With the QueryGo system and the proposed RF
algorithm, the retrieval procedure is: 1. User inputs a
query image; 2. The visual feature of the query is extracted
by QueryGo; 3. According to the Euclidean distance, all
images in the database is ascending sorted based on
dissimilarity; 4. User choose positive or negative
feedback; 5. The kernel projection matrix is calculated
based on the steps a-f of the KDBDA algorithm; 6. Query
and all images in the database is projected in the kernel
space based on step g of the KDBDA algorithm; 7. Go to
step 3, until the user confirms a satisfied result.
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4.2 Evaluation of the Experimental Results

We evaluate the performance of the proposed algorithm
according to the accuracy, i.e. the ratio of the number of
retrieved relevant images to the top N retrieved images.
We did the statistical experiments on a large-scale image
database, which includes 17,800 Corel Images [3] with 90
concepts (relabeled by ourselves).

Figure 2. Top-left is the top 10 accuracy, top-right is the top 20
accuracy, bottom-left is the top 30 accuracy, and bottom-right is the top
40 accuracy. The x-coordinate is the ith relevance feedback iteration, and
the y-coordinate is the accuracy of the top n images.

In these experiments, we compared the new algorithm
(KDBDA) with two state-of-the-art algorithms, the
constrained support vector machine (CSM) [15] and
KBDA [7]. The computer automatically did the feedback
experiments with 300 queries. For each iteration, the
system marked the first 5 incorrect (correct) retrieved
images from the top 48 matches as irrelevant (relevant)
examples. In the kernel based algorithms, we chose the

Gaussian kernel ( )
2

,K e ρ− −= x yx y , because it shows the

best performance. The kernel parameters are chosen from
a series of values, which shows the best performance for
each of the algorithms. For CSM, the best value is 1=ρ .
For KDBDA and KBDA, the best performance is found at

.10/1=ρ
Figure 2 shows the performance of KDBDA, KBDA

and CSM. The results show that our algorithm KDBDA
outperforms KBDA and CSM consistently. In addition, the
computational costs of the three methods are similar in our
experiments.

5. CONCLUSION

In this paper, we proposed a straightforward method to
solve the matrix singular problem of the modified biased
discriminant analysis in the kernel feature space. The new
algorithm removes the null space of “the negative scatter

with respect to positive centroid” matrix, and then the
eigenvectors of the “the positive with-in class scatter”
matrix corresponding to the smallest eigenvalues are
extracted as the most discriminant directions in the kernel
space. From a large number of evaluation experiments, we
can draw the conclusion that Kernel Direct Biased
Discriminant Analysis outperforms both the traditional
Kernel Biased Discriminant Analysis and the Constrained
Support Vector Machine.
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