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ABSTRACT

Perceptual watermarking methods are designed to be trans-
parent and robust to attacks. A perceptual model based
on Just Noticeable Difference levels introduces amplitude
constraints on the watermark and the noise generated by
an attacker. Two problems are considered in this paper:
(1) detection performance for embedding a single bit in �

data, and (2) Shannon capacity. In both cases the original
host data are known to the receiver. Both problems are for-
mulated as games involving a suitable cost function (Bhat-
tacharyya distance and mutual information, respectively).
The watermarker and the attacker design probability dis-
tributions in order to respectively maximize and minimize
the cost function. The optimal distributions are quite differ-
ent from the uniform distributions that have been previously
used in the watermarking literature.

1. INTRODUCTION

Data-hiding codes designed for applications such as copy-
right protection and authentication must satisfy two impor-
tant properties. The embedding process should be transpar-
ent, in the sense that marking the original host data should
not introduce perceptually noticeable degradations. Thus
watermarks should be weak signals, whose statistical char-
acteristics depend on perceptual models. The embedding
process should also be robust against various types of at-
tacks. Thus different watermarks (codewords) should be
statistically distinguishable by a receiver who may know
little about the attack process. The watermarking litera-
ture contains several instances of this problem when signal
degradations are measured using models of human percep-
tion [1, 2, 3].

One may ask whether/how these designs could be im-
proved. A natural question in this spirit is: What are the fun-
damental performance limits for watermarking under per-
ceptual distortion models? Recent studies (e.g., [4, 5]) have
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provided a framework for such analysis, but so far practi-
cal solutions have only been obtained for distortion mod-
els such as squared-error distortion and Hamming distor-
tion. The goal of this paper is to build on this framework
and quantify fundamental performance limits under a sim-
ple perceptual image model, based on Watson’s work [6].

The papers [4, 5] used a game-theoretic framework to
characterize fundamental performance limits. In this frame-
work, one specifies distortion constraints for the watermarker
and the attacker and formulates an appropriate cost function
to be maximized and minimized, respectively [4, 5]. For a
capacity analysis, the appropriate cost function is a certain
mutual information (in the private game where the host data
are known to the receiver) or a difference between two mu-
tual informations (in the public game where the host data
are unknown to the receiver). In some data hiding applica-
tions, only a few bits are to be embedded. Then capacity
is not an issue, and error probability is the appropriate cost
function. Both problems are considered in this paper when
the embedding and attack are subject to perceptual distor-
tion constraints.

2. JND-BASED WATERMARKING

Data can be embedded into images (compressed or uncom-
pressed) using Human Visual System (HVS) models [1].
These models can be formulated in various spatio-frequency
domains. For instance, the image can be decomposed into
DCT blocks and Watson’s model [6] for the HVS can be
used to estimate a Just Noticeable Difference (JND) level
for each DCT coefficient. Denote a coefficient by ����,
where � represents coefficient coordinates. The message to
be embedded is mapped onto a normalized watermark se-
quence����, where each���� � ���� ��. Next, let ���� be
the JND coefficient for coefficient ����. If ������ � ����
(i.e., the coefficient is significant), the watermarked coeffi-
cient ���� is defined as

���� � ���� � ���������
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According to the JND model, the resulting marked image is
perceptually indistinguishable from the original.

An attacker who tries to distort the image while keeping
the attack transparent can exploit the JND model. Indeed
the JND coefficients can be learnt by the attacker from the
watermarked image. The attacker can produce an image
with DCT coefficients

� ��� � ���� �� ���

where� ��� is referred to as the attacker’s noise. The sever-
ity of the attack depends on the size of the � ���’s relative
to the JND levels. For instance, the attacker may want to se-
lect a noise sequence that satisfies �� ���� � �����, where
� � � controls the severity of the attack. 1 In this paper,
we find the worst-case attack noise distribution for differ-
ent cost functions under such JND-based constraints. Previ-
ous work has used uniform noise distributions [2] to model
JPEG quantization noise, but as we shall see, such attacks
can be severely suboptimal.

3. DETECTION PROBLEM

We study a generic version of the detection problem. The
coefficients���� are group into spatio-frequencybands with
similar perceptual characteristics and same JND ����. We
consider a length-� host sequence � � ���	 � � 
 � ��
made of the coefficients in a given band; denote by � the
JND for that band. There is one watermark bit to be embed-
ded into the sequence �, producing a marked sequence �.
The bit values are equally likely. Next, the attacker adds a
noise sequence� � ���	 � � 
 � �� to �, giving rise to the
degraded sequence � � ���. In our analysis, we assume
the samples �� are independent and identically distributed
(i.i.d.) according to some distribution ���. The attacker
limits the magnitude of the noise to � (typically � � �).

Under this setup, for any choice of ���, the optimal
signaling scheme is binary antipodal: select an arbitrary
signaling waveform � � ���	 � � 
 � ��, where each
�� � ����. Then mark the host sequence according to
� � � � ��, depending on the bit value. To simplify sub-
sequent notation (but without loss of generality), we select
�� � �.

We have assumed the receiver knows the sequences �
(private watermarking) and �, so it can also learn the noise
distribution ��� from the sequence � � � � � � ��.
The rival pdf’s for �� � �� are shown in Fig. 1. Based on
���, the detector can implement the optimal likelihood ra-
tio test (comparing the sufficient statistic

��
��� ��� � �� �

�� � ���� �� � �� with an appropriate threshold), incurring
a probability of error ��.

1A similar approach is often used to select quantizer step sizes in per-
ceptual signal compression [7].

-b-a b-a a-b a+b-b b

p(w-b)p(w+b)

w

Fig. 1. Rival pdfs for the binary hypothesis testing problem.

Now, we have the following problem at hand – from the
attacker’s perspective. The attacker would like to design
a distribution ��� which maximizes ��. Unfortunately
this problem appears intractable as soon as � is moderately
large. However, the attacker can determine ��� which
minimizes the Chernoff distance ���� ����, between the
binary hypotheses [10], where

���� � � �	

� ���

���

��� � ������� � �� ���

The solution to this problem is a symmetric ��� and � � �
� .

Recall that ������ is the Bhattacharyya distance,

��� � � �	

� ���

���

�
�� � ���� � �� ��

which is convex in . The error probability satisfies the up-
per bound �� � �

��
������; moreover, for large �, we have

���� �	�� 	 ���. The attacker’s problem is to find

� � �
���	
�

����

A notationally simpler version of the problem is where
all variables �	 �	 �	 � � �	��	���	 � � �� and � � � can
be made arbitrarily small. Assume without significant loss
of generality that �

� and �
� are integers. Then, � is a prob-

ability mass function with � mass points ��	 �	 � � � 	 	 �,
where � is the mass at � � �� and 	 is the mass at � �

�. We have,� � ��
� �� and if we define� � ��

� � ��	���
� ,

our problem now reduces to the convex programming prob-
lem of finding a �� such that

�
� � �
���	

�

����

where,

���� � � �	

	�
�
���



���


subject to
�	

��� � � � and � �  for � � �	 �	 � � � 	 � .
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We solve this problem numerically using an interior point
method [11]. For our simulations, we fix � � � and vary
�. The optimal Bhattacharyya distance depends only on
���, the integer part of � (Fig. 2). The staircase effect in
the Bhattacharyya distance is more pronounced when � is
small. Further, if we use an uniform discrete distribution for
the noise, the Bhattacharyya distance is � ���� � �

�����.
It decays asymptotically only as ��� whereas the optimal
Bhattacharyya distance decays as ��� (Fig. 2).

In Fig. 3 we plot the optimal ���� for different integer
values of �. Small values of � are more realistic in wa-
termarking applications. Two observations should be made
here. First, for integer �, the optimal noise is a lattice noise,
with lattice spacing equal to 2. A similar phenomenon has
been observed in related detection problems, under differ-
ent sets of assumptions [8, 9]. Second, the curves resem-
ble a truncated subsampled Gaussian curve for large �. For
non-integer �, the curves are more complicated but they too
exhibit the truncated Gaussian nature.
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Fig. 2. Optimal Bhattacharyya distance as a function of �.

To illustrate the usefulness of this approach, consider
� � � and � � � (mildly agressive attacker) and a target
�� � ����. From Fig. 2, we obtain ����� � �����	. We
then select � � �� �� ����

������ � � ��. The actual �� based
on this value of � is ��
 � ���	, as determined from ��


Monte-Carlo experiments. The probability of error for a
suboptimal uniform-noise attack would be three orders of
magnitude lower : �� � ����� ����.

4. CAPACITY PROBLEM

Our second problem is a capacity problem, in which we
wish to reliably embed as many bits as possible in a length-
� host sequence �. No statistical model is needed for �.
There is an amplitude constraint ��� � 	�� � � on each sam-
ple 
 � �� �� � � � � � of the marked sequence �. The sequence
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Fig. 3. Worst case noise pdf ���� for different values of �
using Bhattacharyya distance as the cost function.

� is attacked with i.i.d. noise � whose samples have mag-
nitude at most equal to � and are distributed as ����. The
decoder receives � � ���.

Assuming the decoder knows ���� and the host signal
�, we evaluate the capacity � of this channel. We have [4]

� � ��
���

��
���

��� �� � �� � ��
���

��
���

��� �� � �� (1)

where the support set of ���� is ���� ��, and the mutual-
information function ��� �� ��� � �

�
������� is concave

in ���� and convex in ����. The second equality in (1) holds
because the mutual-information game admits a saddle point.

To evaluate�, we again use numerical optimization meth-
ods by discretizing the range ���� �� for � and the range
���� �� for �. If we restrict optimization of ���� to the
binary alphabet 	
��, then the optimal ���� is symmetric
with equal masses at �� and �, and the worst-case ���� for
large � is a truncated subsampled Gaussian-looking curve
(see Fig. 4). The optimal ���� obtained here are similar,
but not identical, to those obtained in Sec. 3. Further, as in
Sec. 3, the value of the game (here capacity) depends only
on ���.

For a quaternary alphabet, i.e., � � 	
 �
� �
��, we see

that capacity improvement over the binary case is significant
only for small � (Fig. 5). For larger �, the optimal ���� for
the quaternary alphabet tends to a symmetric mass distribu-
tion at 
� (binary alphabet). This is typical of problems of
transmission over very noisy channels: if the attacker is ag-
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gressive, there are few signals we can reliably transmit, and
they need to be as much separated as possible. Conversely,
when the attack noise is very low, the capacity-achieving
distribution ���� is nearly uniform.

Fig. 5 also shows capacity under uniform ����, for bi-
nary �. Capacity is equal to ���; the suboptimality of uni-
form ���� is particularly evident for large �. Finally, note
that problems where � is restricted to a small alphabet (bi-
nary, etc.) are applicable to problems of data hiding in JPEG
and JPEG-2000 images.
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Fig. 4. Capacity-minimizing noise pdf ���� for different
values of �.
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Fig. 5. Log-capacity for binary and quaternary alphabets
with varying �.

5. CONCLUSION

In this paper, we have looked at two private watermark-
ing problems where the watermark and noise are amplitude
constrained. For the 1-bit transmission problem, binary an-
tipodal signaling is optimal. We found using convex pro-
gramming techniques, the noise which minimizes the Bhat-
tacharyya distance between the two binary hypotheses. The

optimal Bhattacharyya distance depends only on the inte-
ger value of the amplitude ratio ���. For severe attacks, the
noise pdf looks like a subsampled truncated Gaussian noise.
In the capacity problem, where the objective is to find the
capacity-maximizing input distribution and the worst-case
attack noise, we found similar results. Future research will
apply these results to data hiding in images.
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