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ABSTRACT

Based on evolution strategies (ESs) a novel adaptive

motion estimation search algorithm (AESME) is presented.

ESs consider the evolution progress on the phenotype

level. In contrast, genetic algorithms focus on heredity

genetic mechanism on the chromosomes level. In ESs the

mutation operation accords with the normal distribution 

law. In the AESME algorithm the (µ, )-ES algorithm is 

adopted to block motion estimation, and the adaptive

scheme is advanced to improve the convergence rate on 

the basis of the 1/5 success rule. Experimental results

demonstrate that this algorithm has similar performance to

that of the full-search (FS) algorithm, and owing to the

inherent parallelism and low complexity of ESs, AESME

is suitable for VLSI implementation.

1. INTRODUCTION 

In the video coding system, such as H.264, MPEG-4 and

AVC, the motion estimation is an essential component of

the encoding algorithm. For it is the computationally most

demanding algorithm of an encoder, taking up

approximately 60-80% of the total computation time, the

motion estimation algorithm has a high impact on the

visual performance of an encoder at a given bit rate.

The common motion estimation method is the block-

matching algorithms (BMAs). Among the BMAs, the FS

method leads the best result. However, the FS’s high

computational cost prevents it from being applied in most

real-time systems. A number of fast algorithms have been 

proposed, such as three-step search, diamond-search and 

some predictive search algorithms. These algorithms are 

mainly based on the assumption, i.e. the matching

function changes monotonously when the search point

varies from the farthest point to the optimal one, and this

assumption are not always accord with the real cases. 

Moreover in these algorithms, during each search, only 

fixed points are checked. So they are inclined to the local

optima.

In order to improve the performance degraded by the

monotonous assumption, genetic algorithms (GAs) have

been applied to BMA, in [1] [2] [3], the search algorithms

based on genetic algorithms are proposed. But the features

of GAs needs sufficient individuals and generations to get

the optimal result, in [1] – [3], the population size adopted

is equal to or larger than 16, which makes it ungainly to

decrease the computational complexity.

Though both GAs and ESs are the major branches of

evolutionary algorithm, they are closely related but

respectively developed. The former focus on heredity

genetic mechanism on the chromosomes level, while the

latter consider the evolution progress on the phenotype

level, in which only selection and mutation are often used 

to solve problems. In addition, the mutation operation

accords with the normal distribution law in ESs. ESs are 

significantly faster than traditional GAs in numerical

optimization and also more likely to find true global

extremum of a function [4].

In this paper, an adaptive motion estimation method

based on ESs is provided. In Section 2, the basic

principles of ESs are introduced. In Section 3, the

AESME algorithm is described. In Section 4 the

corresponding experimental results as well as

performance comparisons with other algorithms will be

presented.

2. THE BASIC PRINCIPLES OF ES 

ESs were introduced in 1964 by Rechenberg working in

Berlin and further developed by Schwefel [4]. ESs were 

initially designed to solve difficult discrete and continuous 

parameter optimization problems. Although

recombination has been used in ESs, the mutation is the

primary search operator. 

A principal one of ESs is (µ, )-ES, where 1 . (µ,

) means that µ parents generate  offspring in each 

generation. In this paper, only the simple version of ESs, 

i.e. ESs without any recombination, is considered. A 

global minimization problem can be formalized as a pair

(S, f), where is a bounded set on RnRS
n and 

is an n-dimensional function, the problem is to

find an , so that . The basic 

algorithm is described as follows:

nRSf :

Sxmin )()(: min xfxfSx

Step 0: (Initialization) A given population consists of µ

individuals. Each individual is taken as a pair of real-
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valued vectors, (xi, i), xi is the variable, and i can be 

called as the step length. }2,1{i . Set the generation

counter g=0;

Step 1: (Variation) Each individual parent produces /µ

offspring on average, so that a total of  offspring is

generated. For k=1… µ and m=1… .

xm
(g+1) = xk

(g+1)+z(g +m)                           (1) 

Where z(g +m) is a normally distributed random vector

computed from i;

Step 2: (Selection) Evaluate the fitness for each 

offspring, then only the µ best of the  offspring become

parents of the following generation. Stop if the stopping

criterions are satisfied, otherwise g=g+1, and go to Step 1. 

In the ESs, the individual can be directly expressed by

the variables, however, in the GAs it is coded into binary

representation of the variables. ESs are neither confined to 

continuous space, nor supported by the assumption of 

monotony. The qualities of ESs enable it not to be trapped 

to local optima. In the next section, the AESME block

matching algorithm will be described in detail.

3. AESME SEARCH ALGORITHM 

The basic elements in ESs are the definition of individuals,

the control of parameters, fitness evaluating function, the

terminating rules and selection method. The AMES search

algorithm is discussed as follows.

3.1. The definition of the individuals

In BMA, the motion vector is represented by MV (x, y),

and the individual is defined as

),,,( g
yi

g
xi

g
i

g
i

g
i yxC                             (2) 

where g is the generation number, xi
g , yi

g correspond to

the x and y variables of MV . And xi
g, yi

g is the step

length of xi
g and yi

g respectively, },...,1{i ,

 , represents the set of all points in the

range of search window.
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i

g
i yx

3.2. The mutation of the individuals

In ESs, mutation is performed independently on each 

other vector element by adding a normally distributed

random value with expectation zero and standard

deviation , the operation of mutation is defined as:
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where denotes a normally distributed one-

dimensional random number with mean zero and standard

deviation one, and indicates that the random

number is generated anew for each value of ‘xi’, the 

factors ’ and  usually set to (

)1,0(N

)1,0(xiN

n2 )-1 and ( n2 )-1.  The 

mutation of yi
g and yi

g is identical. If the coordinates after 

mutation exceed the search range, then adjust the

coordinate’s variables by applying the modulus operation.

The genotype of a descendant differs only slightly

from that of its parents. From Eq. (3) and Eq. (4), it can be

seen that how to control the step length parameter  is 

very important to the convergence rate.

3.3. Step length adaptive control

The simplest step length adaptive control is conducted

according to the 1/5 rule, that is, during the optimum

search the frequency of successes is obtained, i.e. the ratio

of the number of successes to the total number of trials

(mutations), if the ratio is greater than 1/5, increase the 

variance, if it is less than 1/5, decrease the variance [4].

This rule simply adopts the mutation strength through a 

deterministic and rigid control mechanism, when a 

relative small is adopted, this rule obtains the ideal

result.

But in the BMA, considering the computation cost, the

and the maximum generation could not adopt too large

numbers. In order to improve the convergence rate further,

the step length adaptive control, the 1/  rule, is defined as:

during the optimum search, every 3  mutations, if the

ratio is greater than 1/ , increase the variance, if it is less 

than 1/ , decrease the variance. For the small  ( <5) and 

maximum generation number, it obtains the better result

than the 1/5 rule. This will be shown in Section 4.

3.4. The definition of fitness function 

The fitness function is defined as:

),(),(),()( 1
g
i
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ipp
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i

g
i

g
i ynxmInmIyxSADCf (5)

where SAD represents the sum of absolute differences,

represents the search space,  means pixel value of

the point (m, n) in the frame p.

),( nmI p

3.5. Selecting method 

There are two main selection methods in ESs, namely, (µ,

)-selection and (µ+ )-selection. In the former method,

the parents of the next generation are obtained by

selecting the µ best offspring. While in the latter one, the

parents are obtained from both the older generation and

the offspring.

Because the  (µ+ )-selection permits no worsening of

the fitness value, the parent survives and may do so for 

many generations, which increases the probability of a 

successful mutation still having a poorly adapted step 

length. If a small  and small maximum generation
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number are adopted, (µ+ )-selection will remarkably

decrease the convergence rate and the algorithm is prone 

to trapping into local optima.

In the AESME algorithm, the (µ, )-selection is applied,

and the individual with minimum fitness value is stored

for each every generation. 

3.6. The definition of terminating rules 

There are two stopping rules defined, either condition a) 

or b) is satisfied then the search stops. 

a)The current minimum fitness is less than or equal to

the threshold value TH. TH is assigned to the

minimum value of fitness in the previous frame,

and TH is initialized as zero.

b)The generation number reaches the maximum

generation number.

In the current implementation of AESME algorithm,

set µ=1. Because the structure of (1, )-ES is simpler, and 

(1, )-ES can perform large search steps with the result of

larger fitness difference, (1, )-ES makes only a reduced

size stop in that direction[5] when it found the right

direction. The AESME algorithm starts from the small

step length, then adaptively adjusts the step length 

according to the 1/  rule. The AESME algorithm can be

summarized as follows: 

4. SIMULATION RESULTS AND DISCUSSION 

In the simulations, AESME is compare with FS, TSS.

AESME algorithm was completed in MoMuSys MPEG4

VM platform, using the simple profile, error resilience

mode is disabled. The block size is fixed at 16x16. To

make a consistent comparison, block matching is

conducted within a 15x15 search window, picture format

is CIF, frame rate is 30f/s, and the distance between P

frames is 1, it is easy to extend to B frames. As for the 

parameters of ESs, the  = 3, the ’=0, =0.7, the 

maximum generation number is 9. We select first 75

frames of the sequences Bus, Foreman, News, Mobile, and

Garden to test the proposed algorithm.

Table 1 

Comparisons of PSNR of 1/5-rule and 1/  rule 

adaptive control

Image(CIF)

no

control
1/5 rule 1/    rule

Bus 36.139 36.153 36.326

Foreman 37.461 37.470 37.503

News 39.879 40.035 40.036

Mobile 35.071 35.094 35.213

Garden 36.690 36.710 36.848

Average 37.048 37.092 37.185

A performance comparison among the three algorithms

is shown in Table 1, based on ESs without the adaptive

control, with 1/5 rule and with 1/  rule in terms of their

average peak signal-to-noise ratio (PSNR) after 

reconstruction. It can be seen that, of all the sequences, 

the 1/ rule is the best, and it improves 0.09dB on average 

compared with to the 1/5 rule. The image sequences with 

fast motion, like Bus and Mobile, the quality improved is 

larger than the other sequence with low motion, because 

the 1/  rule provide higher frequency step length

adjustment than the 1/5 rule, which helps increase the

convergence rate. However, the quality of the algorithm

with the 1/  rule does not increase largely in contrast to

the one without any adaptive control. A possible

explanation is that the x and y variables are mutated

independently, if the direction information is added to

individual, the quality will be further enhanced.

Step 0: initialize the population with the motion

vector (0,0), g=0, calculate the fitness of

the parent, assign to Cg
C0 min;

}{
0
gg CP , },,0,0{ 000 yx

g
C

Step 1: execute  times mutation operations to

generate  offspring;
11

2
1

1
1 ,...,,

gggg CCCP

Step 2: evaluate the fitness of each individual in 

Pg+1;

Step 3: sort the Pg+1 according to individuals 

fitness, get the Cmin
g+1, update the Cmin,

obtain the new population;

}{
1

min
2 gg CP

Step 4: stop the search if the stopping rules are 

satisfied, go to Step  6;

Step 5: adjust the step length according to the

section 3.3, g=g+1, go to Step 1;

Step 6: obtain the MV  from Cmin.

Table 2 

Comparisons of PSNR of the Search Algorithms

         ME method

Image FS TSS AESME

Bus 37.159 34.689 36.326

Foreman 38.355 34.306 37.503

News 40.093 39.972 40.036

Mobile 36.009 33.930 35.213

Garden 37.651 34.973 36.848

Average 37.853 35.574 37.185

Percentage 100% 94% 98%

The difference in PSNR of FS, TSS and AESME 

algorithm is shown in Table 2. From Table 2, it can be 
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observed that the performance of AESME is similar to

that of FS, and much better than that of TSS. For the

AESME algorithm introduces the good step length

generation and adaptive control mechanism, which makes

the searched points distribute more reasonably, and each 

variable with a step length parameter endows the

algorithm with more flexibility. Whereas, TSS just

searches fixed points without much flexibility. 

In order to compare the computational complexity of

three algorithms, each algorithm is executed ten times for 

every sequence to get the average execution time. The 

execution time is accumulated only for motion estimation

module; it is expressed in the unit of microsecond. The 

rate graph is shown in Fig.1. The execution time of 

AESME is far less than that of FS, but a little more than

that of TSS. Because AESME needs to execute mutation

operations  times in each generation besides the SAD

operations, generally, AESME requires 27 (  * maximum

generation number) points, while TSS only search fixed

number of points in each macro block. 

5. CONCLUSION 

This paper proposed a new fast search algorithm for block

matching motion estimation. AESME algorithm is derived

from ESs, by means of mutation operation according to

the normal distribution law, and obtains good

convergence rate. The experiment results show that the

performance of AESME is similar to that of FS, and the

computational complexity is just a little larger than that of

TSS. The AESME algorithm has less kinds of operations

and much simpler structure than other motion estimation

algorithms based on GAs, AESME algorithm does not

include recombination operation, and due to the inherent

parallelism of ESs, AESME algorithm is suitable to the

VLSI implementation.

6. THE FUTURE RESEARCH 

In order to improve the efficiency and reduce the

complexity of AESME algorithm, our future research

mainly focuses on three aspects. First, in the current

version of AESME, the x and y are mutated independently,

there is no direction information in the definition of the

individuals. Some factors of direction information should

be introduced into our algorithm. Second, to reduce the

computation cost in mutation operation, some other

simpler mutation methods is considered to use, such as the

mutation rule given by the symmetrical two-point

distribution. Finally, through using the predictive

algorithm to select the initial parent will improve the

convergence rate further.
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Fig.1. Comparison of the Average Execution Time

III - 356

➡ ➠


