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ABSTRACT

Optical flow estimation algorithms such as the Lukas-Kanade
method and Horn and Schunk method require selection of a
tuning parameter. In the former case a neighbourhood size,
in the latter, a penalty parameter. Selection of these tuning
parameters is difficult in general but has a profound effect
on the results. So automatic methods of selection are of
great interest. In previous work we have developed selection
methods for the algorithms above. Here we develop a se-
lection procedure for a robust version of the Lukas-Kanade
method. This is a non-trivial task since the robust algorithm
is nonlinear.

1. INTRODUCTION

The problem of estimating motion (i.e. velocities) from a
sequence of image intensities � � ���� ��� ��� is a much
studied one in computer vision e.g. [1],[2],[3],[4]. Most ap-
proaches to this problem start with the brightness constraint
equation (BCE) which assumes brightness does not change
with time so

��

��
� � �

��

��
� �

��

���
� �

��

���
� �� � ���� � ����

where ��� ��� � ��� are image intensity gradients; �� � are the
��� �� components of optical flow. By temporal and spa-
tial differencing the image gradients can be estimated (as
���� ���� �

���� ) from image intensities. The BCE provides one
constraint on the two velocities �� �. But further informa-
tion is needed and this is supplied by the assumption of spa-
tial continuity for �� �.

Such continuity can be supplied either as in [5](HS) by
Tikhonov regularization or as in [6](LK) by local estima-
tion. More recent approaches to optical flow estimation
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have emphasized the necessity to take account of outliers
due e.g. to occlusion; thus the above methods are modified
[4],[2]. Our aim here is to develop a method for automatic
selection of the neighbourhood size for such a robust [6] al-
gorithm. Our approach can handle the HS approach but will
be pursued elsewhere.

For ill-conditioned inverse problems [7] (of which Opti-
cal flow estimation is an example) the problem of estimating
tuning parameters has a large literature e.g.[8]. There are
two approaches: deterministic, most notably cross-validation
based on minimising an estimator of a mean squared error
quality measure e.g.[9]; stochastic based on a(n) (empirical)
Bayesian approach e.g[10],[11].

Unfortunately, as discussed in [12], the Bayesian ap-
proach is usually computationally very demanding and ap-
proximations are necessary. We pursue the deterministic
approach here; although cross-validation is also computa-
tionally demanding for nonlinear problems our approach
[12] has computational demands that are usually modest by
comparison. The Bayesian approach has been mentioned in
the computer vision literature [13] but not applied to optical
flow.

While there has been some work on tuning parameter
selection in image processing e.g.[14] there has been only a
little on optical flow [15],[16],[17] and none of it applies to
robust optical flow estimation.

In section 2 we formulate the robust BCE . In section 3
we develop our new selection criterion. Section 4 contains
results and conclusions in section 5.

In the sequel � � ���� ��� is a point on the plane.

2. NOISY BCE

We formulate the velocity estimation problem as a regres-
sion problem in a standard way as follows
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Here � represents a lexicograhically ordered image of � �
� pixels as do �� �� ��� � ��� � � (so e.g. � is an � � � �
vector). The noise 	 , treated as white noise of variance

�, soaks up violations of the BCE due e.g. variations in
ambient illumination, occlusions etc.

A number of approaches have been taken to robust es-
timation of optical flow [2],[4],[18]. Since we are concen-
trating on automatic tuning parameter selection we use a
straightforward approach.

At point � the ’overlapped’ velocity estimate ��� is ob-
tained by solving the robust regression problem [19].
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where ���� is a potential function e.g. we use
��	� �

�
	� � �� � � where � is a small fixed parame-

ter; �� is a hump shaped kernel (e.g. a product of triangles
or a Gaussian) whose region of support defines the neigh-
bourhood of pixels used to calculate ��� . As long as the
kernel is continuous its use eliminates Gibbs ringing and
’zigzagging’ in the criterion below.

Carrying out the optimisation leads to the estimator (with
���� � ���� � ������ )
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is the influence function.

This equation has to be iterated at each P. It usually con-
verges in a few steps. It is initialized with the overlapped
LK estimator using ���� � �.

3. AUTOMATIC NEIGHBOURHOOD SELECTION

To measure the quality of the optical flow estimator. we use
intensity based mean squared error (mse). ( A criterion us-
ing velocity base mse is much harder to develop and will
be pursued elsewhere). We also note that methods such as
AIC (Akaike Information Criterion),MDL (Minimum De-
scription Length) are inapplicable since they require that the
problem be specified in terms of a model dimension which
is not the case here.

So our quality measure or statistical ’risk’ is

� � � � ��� � ��
� � � �� � �� � �� ��

where � � ��� �� � and �� is the optical flow estimator
from the algorithm of interest. Ideally we would choose the

neighbourhood size to minimize �. Now � cannot be cal-
culated since � is unknown so the idea is to find an empiri-
cally computable surrogate for� and minimize that instead.
It can be shown (modifying [12]) that an unbiassed estima-
tor of � (known as Stein’s unbiassed risk estimator SURE)
is (with � � � � �� = residual)
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Dropping terms not dependent on the neighbourhood size
leaves
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Following [12] it can be shown that
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. For our robust estimator we find
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This leads to the criterion (with ��� � ���
��� )
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We call this the robust SURE criterion. It applies to any
choice of potential. For a squared error potential function it
collapses to that of [16].

4. RESULTS

We illustrate our new results with a well known example;
the rotating Rubik cube sequence used in [20]. In Fig.1 is
a plot of the robust SURE criterion. It exhibits a well de-
fined minimum (at �� � ��) although in practice one will
want to look at estimates constructed based on neighbour-
hood sizes in the vicinity of the minimum [9] e.g. � � �.
In Fig.2 is shown the optical flow estimates for the regular
LK method (with an optimal neighbourhood size chosen us-
ing the appropriately simplified criterion). Fig.3 shows the
robust optical flow estimates based on the optimal neigh-
bourhood size. The regular estimator shows some erratic
behaviour in several places. This fluctuation is absent from
the robust estimator. The estimates are based on � � �	�
and 10 iterations at each point. Changing � does not change
the qualitative nature of the results but does have some small
impact on the details. In Fig.4,Fig.5 we show SURE and
estimated flow with 20 iterations. We see the qualitative na-
ture of the result is unchanged. However the minimum has
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Fig. 1. Robust SURE for Rubik Cube Sequence.
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Fig. 2. Regular LK Optical Flow for Rubik Cube Sequence

shifted to �� �. The difference is not great and as indicated
before we would now look at �� � ��, as well perhaps at
�� �. The estimated flow with a �� � neighbourhood size
is a little more noisy than the ����� estimate and we would
recommend the latter in this case.

5. CONCLUSION

We have exhibited for the first time an automatic proce-
dure for selection of neighbourhood size for robust Lukas-
Kanade type optical flow estimation. The method has been
illustrated successfully on a standard image sequence and
shows a well defined optimal neighbourhood size choice.
There is a small influence of iteration count on the results.
In practice however one may wish to view flow reconstruc-
tions using neighbourhood sizes in the vicinity of the mini-
mum and so these small variations will not be a problem.
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Fig. 3. Robust LK Optical Flow for Rubik Cube Sequence
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Fig. 4. Robust SURE for Rubik Cube Sequence (20 itera-
tions).
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Fig. 5. Robust LK Optical Flow for Rubik Cube Sequence
(20 iterations).
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