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ABSTRACT

Block-matching algorithm (BMA) for motion estimation (ME) has
been widely adopted by real-time video coding applications due
to its effectiveness and simplicity in implementation. Most fast
BMAs are based on the assumption that ME matching error de-
creases monotonically as the search approaches the position of
the global minimum error. This paper measures the contributions
on computational costs reduced by different fast BMAs includ-
ing four-step search, diamond search, hexagon-based search and
recently proposed adaptive multi-mode search (AMMS). Compar-
ison results show that the AMMS algorithm achieves a significant
improvement based on the given mathematical models. Experi-
mental coding results are also presented.

1. INTRODUCTION

Block-matching algorithm (BMA) for motion estimation (ME) has
been widely adopted by the current video compression standards,
such as H.261, H.263, MPEG-1, MPEG-2, MPEG-4 and H.264 [1]
due to its effectiveness and simple implementation. The most
straightforward BMA is the full search (FS), which exhaustively
evaluates all the possible candidate blocks within the search win-
dow. However, this method is very computationally intensive, and
can consume up to 80% of the computational power of the encoder.
This limitation makes ME the main bottleneck in real-time video
coding applications. Consequently, fast BMAs are indispensable
to decrease the computational cost.

In the past decades, many fast BMAs were proposed for alle-
viating the heavy computation of the FS, such as three-step search
(TSS) [2], new three-step search (NTSS) [3], four-step search (4SS)
[4], block-based gradient descent search (BBGDS) [5], diamond
search (DS) [6, 7], and hexagon-based search (HEXBS) [8] algo-
rithms, etc. Because of the center-biased global minimum motion
vector (MV) distribution characteristics, more than 80% of the
blocks’ MVs could be regarded as stationary or quasi-stationary
and most of the MVs are very close to the central area of the search
window [6]. Therefore, it is reasonable to assume that ME match-
ing error decreases monotonically as the search moves toward the
position of the globally optimal solution. Based on this assump-
tion, square-shaped search patterns of different sizes are employed
in the NTSS, 4SS and BBGDS [3]-[5]. The DS [6, 7] employs
diamond-shaped patterns, which results in similar distortion per-
formance as compared to those of the NTSS and 4SS, with even
fewer search points. This approach has been shown to be very
effective for the center-biased MV distribution model. The DS
adopts two diamond-shaped search patterns [6]: 1) large diamond

search pattern (LDSP) with nine search points and 2) small dia-
mond search pattern (SDSP) with five search points. The LDSP
is repeated until that it reaches the edge of the search window, or
a new minimum matching distortion point occurs at the center of
LDSP. The search pattern is then switched to SDSP, which is used
to refine the search algorithm [7]. Similarly, HEXBS applies the
same search strategy only by replacing the diamond-shaped search
pattern with a hexagon-shaped search pattern which saves compu-
tational energy with slightly decreased performance [8].

In these fast BMAs, since the search patterns are fixed, it is
not efficient when the shapes of the fixed search patterns do not
match the actual motion. Recently, we propose a novel fast BMA,
namely, adaptive multi-mode search (AMMS) algorithm [9]. In-
stead of using the same search pattern, by using MV prediction
together with the SDSP as the initial search step, we categorize
them into four search modes with different shapes based on the
analysis of the initial step. By carefully choosing the best suit-
able mode, it is more effective to capture the true motion direction.
In this paper, the computational complexities in these fast BMAs
are compared based on the assumption of center-biased MV dis-
tribution. Two statistical models are used to characterize the MV
distribution. Both theoretical and experimental comparisons are
presented.

2. ADAPTIVE MULTI-MODE SEARCH ALGORITHM
(AMMS)

Fig. 1 shows the four different modes used in the AMMS algo-
rithm. From Fig. 1, let P1 and P2 denote the two points of the
SDSP around the starting search point with smallest and second
smallest sum of absolute differences (SADs) respectively. Geo-
metrically, there are four types of possible combinations of P1
and P2: A) P1 is the center point, B) P2 is the center point, C)
neither P1 nor P2 is the center point and they are on the same edge
of the SDSP, D) neither P1 nor P2 is the center point and they are
unconnected vertices of the SDSP. Suppose the SAD is chosen as
a block matching distortion measure. The AMMS algorithm can
be summarized as follows [9].

(1) Calculate the SADs for the MV of (0,0) and the MVs of
the blocks immediate left and above to the current one, and
choose the one with the smallest SAD as the predicted start-
ing point.

(2) Apply SDSP search by evaluating and comparing the SADs
of the five candidates to identify P1 and P2.

(3) Use the combination of P1 and P2 to determine the search
modes as described above.
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P2: The point with the second smallest SAD

The point in the SDSP other than P1 or P2

Fig. 1. Four different modes in the AMMS algorithm: (a) P1
is the center point, it is chosen as the target MV; (b) P2 is the
center point, three more candidates around P1 are evaluated; (c)
P1 and P2 are on the edge of the small diamond, five more points
neighboring to them are evaluated; (d) P1 and P2 are vertices of
the small diamond, six more surrounding candidates are evaluated.

(4) Mode A): select P1 as the final solution and stop the search;
Mode B): evaluate three more candidates around P1; Mode
C): evaluate five more points neighboring to P1 and P2;
and Mode D): evaluate six more surrounding points of P1
and P2. If it reaches the border, stop the search; else return
to (3).

3. COMPLEXITY ANALYSIS

As discussed previously, it is assumed that the global minimum
is located near the starting search point with the benefit of small
search patterns, i.e. the center-biased MV distribution. Based on
this motivation, this section aims to quantify the speed improve-
ment obtained by the DS, HEXBS and AMMS. Since the 4SS per-
forms best compared to other conventional BMAs such as the 3SS
and NTSS, and has been implemented in industrial hardware [7],
it is chosen as a reference for our comparison.

In order to simplify the analysis, we assume that the starting
search point is always at the (0, 0) position. Let ns,·(i, j) be the
minimum number of search points used to calculate SADs before
reaching the global minimum when it occurs at (i, j) position,
where · indicates the search method. Fig. 2(a), (b), (c) and (d),
respectively, show ns,4SS(i, j), ns,DS(i, j), ns,HEXBS(i, j) and
ns,AMMS(i, j) within the central ±M region with M = 4 for
the 4SS, DS, HEXBS and AMMS. It can be noticed that ns,·(i, j)
in every search method grows as |i| or |j| increases, i.e. when it
is further away from the starting point. It is evident from Fig. 2
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Fig. 2. Possible minimum number of search points for fast BMAs:
(a) 4SS, (b) DS, (c) HEXBS and (d) AMMS.

that ns,AMMS(i, j) is uniformly lower than ns,DS(i, j) which
implies that the AMMS has lower computational complexity than
that of the DS in all situations. In the case of ns,HEXBS(i, j),
they are higher than ns,AMMS(i, j) at most of the positions ex-
cept for some points at the top and bottom borders where they are
slightly lower by one or three search points. The average gain in
term of number of search points per block of the DS, HEXBS or
AMMS over 4SS can be quantified as follows [7]:

G· =
M∑

i=−M

M∑
j=−M

[ns,4SS(i, j) − ns,·(i, j)] × Ps(i, j), (1)

where (2M + 1) × (2M + 1) is the area where we assume that
the probability of having MV is nonzero, · is either DS, HEXBS
or AMMS, and Ps(i, j) is the probability that the optimal MV
is located at the (i, j) position. Since the matching errors are as-
sumed to be monotonically decreasing toward the global minimum
point, we use the Gaussian and Laplacian distributions as appropri-
ate models for our statistical analysis. We assume that the optimal
MVs are within the ±M region (M = 4) since the probability of
MVs distributed outside the ±4 region is lower than 8% [10].

3.1. G· based on the Gaussian distribution model

Assume that x and y are independent Gaussian random variables
for horizontal and vertical directions respectively with variance of
σ2 and zero mean. The 2-D probability density function (pdf) can
be written as:

fXY (x, y) =
1

2πσ2
· e− x2+y2

2σ2 . (2)
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Let Ps(i, j) =

i+0.5∫

i−0.5

j+0.5∫

j−0.5

fX,Y (x, y)dxdy

=

i+0.5∫

i−0.5

j+0.5∫

j−0.5

1

2πσ2
· e− x2+y2

2σ2 dxdy, (3)

for −4 ≤ i, j ≤ +4. Since it is assumed that no MV is located
outside the ±4 region, the corresponding probability Ps(i, j) is
forced to be zero, i.e. Ps(i, j) = 0, |i| > 4, |j| > 4. The normal-
ized probability P̂s(i, j) is defined as:

P̂s(i, j) =
Ps(i, j)

∞∑
i=−∞

∞∑
j=−∞

Ps(i, j)
=

Ps(i, j)
4∑

i=−4

4∑
j=−4

Ps(i, j)

(4)

Therefore G· can be calculated as follows:

G· =

4∑
i=−4

4∑
j=−4

[ns,4SS(i, j) − ns,·(i, j)] × P̂s(i, j). (5)
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Fig. 3. Theoretical analysis: GDS , GHEXBS and GAMMS based
on (a) Gaussian distribution, and (b) Laplacian distribution.

Fig. 3(a) shows the plots of GDS (dashed line), GHEXBS

(dotted line) and GAMMS (solid line) for different values of σ.
It is clear that G· is positive for the three cases at all values of
σ. Specifically, as σ increases from 0 to ∞, GDS decreases from
4.00 to 1.93, GHEXBS decreases from 6.00 to 5.30 then increases
to 5.88, and GAMMS decreases from 12.00 to 6.27.

When it is highly concentrated at the center, i.e. σ � 1, GDS ,
GHEXBS and GAMMS have the highest gains of 4.00, 6.00 and
12.00, respectively. Among these three fast BMAs, it is obvious
that AMMS has the highest computational gains for small mo-
tion video sequences. For the DS and AMMS, the worst case oc-
curs when σ → ∞ where GDS converges to 1.93 and GAMMS

converges to 6.27, while the worst case occurs when σ = 1 for
HEXBS, where GHEXBS has the lowest gain of 5.30. This im-
plies that even when the motion is highly unpredictable (σ = ∞),
AMMS still yields substantial computational gains over the other
two search methods.

3.2. G· based on the Laplacian distribution model

Similar to the above calculation for the case of Gaussian distri-
bution, the Laplacian distribution is used to calculate G· in this
subsection. Let

fXY (x, y) =
α2

4
· e−α(|x|+|y|) (6)

be the Laplacian pdf where α is a constant parameter ranging from
0 to ∞, determining degree of concentration of the distribution.
Using (6) in (3) and (5), G· can be re-calculated for the cases of
the DS, HEXBS and AMMS as plotted in Fig. 3(b). It is evident
that G· is uniformly positive for the three fast BMAs and achieves
the same lower bounds and upper bounds as those obtained under
the Gaussian distribution model.

Obviously, the computational complexity of the AMMS is con-
sistently lower than that of the DS and HEXBS. When the search
window size is getting larger, GHEXBS|α=0 may increase. For
fast changing sequences, ns,AMMS(i, j) beyond the |i|, |j| > 4
region can be higher than ns,HEXBS(i, j), and thus the HEXBS
seems to be more efficient. However, both prediction of the start-
ing search point and the adaptive mode selection techniques em-
ployed in the AMMS can optimize and improve the speed in ap-
proaching the global minimum. In addition, such a situation is
very unlikely with low probability [10].

4. EXPERIMENTAL RESULTS

The four fast BMAs, the 4SS, DS, HEXBS and the proposed AMMS
algorithms, are simulated using the luminance of popular test video
sequences listed in Table 1, which consist of different formats and
motion contents. SAD is used to evaluate the distortions for block
matching with the block size of 16×16 and search window of ±7.

The average numbers of search points and average MSE val-
ues, which are obtained from these video sequences by using the
4SS, DS , HEXBS and AMMS algorithms, are presented in Table 2
and Table 3, respectively.

From Table 2, the actual GDS is about 2.12 to 3.58, GHEXBS

varies from 5.83 to 7.73, and GAMMS has the range of 10.08 to
13.08. Compared with the analysis results obtained from Section
3, the actual GDS confirms the theoretical gain, GHEXBS and
GAMMS keep values higher than the lower bounds, but exceed
the upper bound in some situation. The reason is that many MVs
of the real-world sequences are highly distributed within the cen-
ter ±1 region, which increases the actual upper bound. For the
AMMS, another reason is because of MV prediction before the ini-
tial SDSP which further eliminates some unnecessary search steps.
Thus additional gain can be added to the theoretical results which
are based on the assumption that the starting search point is located
at the (0, 0) position for all methods.

Notice that our AMMS algorithm reduces the number of search
points remarkably over the 4SS, DS and HEXBS while improving
the MSE slightly at the same time for all the tested sequences as
shown in Table 3. It can be seen from Table 2 that the AMMS ac-
tually performs very competitively in terms of low block MSE dis-
tortion while deducting more than 50% search steps for fast chang-
ing sequences, such as “Football” and “Foreman”. The speed im-
provement is also quite substantial for sequences, such as “Tem-
pete”, where large quantities of small moving directions are in-
volved.

Table 1. Video Sequences Used for Simulation.
Format Video Sequence Number of frames
QCIF (176 × 144) Carphone 96

Football 111
SIF (352 × 240) Garden 114

Mobile 140
CIF (352 × 288) Foreman 300

Tempete 260
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Table 2. Average Number of Search Points Per Block With Re-
spect to Different Methods and Different Video Sequences (Search
Window: ±7).

Video 4SS DS HEXBS AMMS
Carphone(QCIF) 18.94 15.98 11.43 8.29
Football(QCIF) 19.30 16.45 12.39 8.39
Garden(SIF) 19.87 17.45 13.10 6.78
Mobile(SIF) 17.33 13.75 10.62 5.16
Foreman(CIF) 19.44 17.32 12.95 8.12
Tempete(CIF) 16.93 14.46 11.10 6.85

Table 3. Average MSE per pixel for Different Methods and Dif-
ferent Video Sequences (Search Window: ±7).

Video 4SS DS HEXBS AMMS
Carphone(QCIF) 34.37 34.31 34.63 34.26
Football(QCIF) 74.64 74.46 74.59 74.20
Garden(SIF) 88.62 88.26 88.78 88.06
Mobile(SIF) 104.21 104.29 104.34 104.13
Foreman(CIF) 34.60 34.47 34.95 34.43
Tempete(CIF) 58.35 58.40 58.46 58.29

Fig. 4 plots the average search points per block for each frame
using different fast BMAs for the “Carphone (QCIF)” and “Fore-
man (CIF)” sequences. Comparing frame by frame, it is evident
that the number of search points for the case of AMMS is uni-
formly lower than that of other search methods. Fig. 5 plots the
corresponding frame-wise MSE measurements, which are similar
among all fast BMAs. These figures further verify that the AMMS
algorithm consistently yields comparable distortion error in term
of MSE while maintaining substantial improvement on the search-
ing speed.
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Fig. 4. Frame-wise performance comparison of average number
of search points per block between different BMAs with search
window ±7: (a) Carphone(QCIF), (b) Foreman(CIF).

5. CONCLUSION

In this paper, a theoretical complexity analysis for fast BMAs is
discussed based on the assumption that ME matching error de-
creases monotonically as the search approaches the position of the
global minimum error. The Gaussian and Laplacian distribution
models are applied to our analysis, which shows that our AMMS
outperforms the other popular fast BMAs, such as the 4SS, DS and
HEXBS while significantly reducing the computational complex-
ities. The experimental results show that the AMMS achieves the
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Fig. 5. Frame-wise performance comparison of mean square error
per pixel between different BMAs with search window ±7: (a)
Carphone(QCIF), (b) Foreman(CIF).

greatest improvement.
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