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ABSTRACT

We propose a fast and robust global motion estimation algo-
rithm based on two-stage coarse-to-fine refinement strategy,
which is capable of measuring large motions. Six-parameter
affine motion model has been used. Coarse estimation is
done in frequency domain using polar, log-polar or log-log
sampling of Fourier magnitude spectrum of sub-sampled
image. Fourier magnitude spectrum, as translation invari-
ant domain, allows for determination of 4 parameters inde-
pendent from translation. Sampling scheme is adaptively
selected based on past motion pattern. Adaptive selection
of sampling scheme insures best trade-off between accu-
racy and maximum range of motion measurements for cur-
rent motion pattern. Refinement stage consists of RANSAC
based model fitting to motion vectors of randomly selected
high-activity blocks, and hence is robust to outliers. Motion
vector of blocks is measured using phase correlation, which
offers two advantages in this context: sub-pixel accuracy
without significant computational overhead, and if a partic-
ular block consists of background as well as foreground pix-
els, both motions are simultaneously measured; as opposed
to other methods like block matching which rely on SAD or
SSD error metrics and hence fail in such situations. Due to
its hardware-friedly nature proposed algorithm holds poten-
tial for real-time GME even for television images.

1. INTRODUCTION

In general, the term Global motion is used to describe co-
herent component of motions of different constituent parts
of an object, by a parameterized motion model. The process
of estimating these parameters is known as Global Motion
Estimation (GME). Commonly, Global motion refers to ap-
parent motion of background, induced by that of camera.
Global motion estimation is used in several applications viz.
video compression, segmentation, mosaicing, image regis-
tration, camera stabilization etc. Possibility of large mo-
tions, differently moving foreground objects, and appear-
ing and disappearing image regions make the problem of
Global motion estimation very difficult especially under the
constraints of limited computational resources.

1.1. Affine Motion Model

The parametric models used include 2-parameter translation
model, 4-parameter RST model, 6-parameter affine model,
8-parameter projective model etc. Among these methods
affine motion model is very popular as it provides good
tradeoff between generality and ease of estimation.It is math-
ematically expressed as,

X̃ = AX + B (1)

A =
[

a11 a12

a21 a22

]
X =

[
x
y

]
X̃ =

[
x̃
ỹ

]
B =

[
b1

b2

]

X and X̃ are coordinates of corresponding pixels in refer-
ence and current image. A is linear part and B is transla-
tional part of the affine motion parameters.
Global motion estimation methods can be broadly classified
into two categories: spatial domain (Image or pixel domain)
and frequency domain (Fourier and wavelet).

1.2. GME in spatial domain

Most common spatial domain methods include those based
on minimization of SSD (sum of squared difference) or SAD
(sum of absolute difference) error metric. SSD minimiza-
tion is accomplished by gradient descent methods like ML
(Marquardt-Levenburg) [1]. Since, this technique is itera-
tive and each iteration involves image warping and compu-
tation of derivatives, it is computationally very intensive and
slow. Several speed-up strategies have been suggested in lit-
erature, e.g. use of multiresolution framework [1], selective
integration and warp free formulation [2]. SAD error metric
minimization is accomplished by direct search of parameter
space. But, complexity of search increases exponentially
with number of parameters. These techniques suffer from
the disadvantage that they might get stuck in local minima,
although it is less likely in multi resolution framework.

Feature based methods rely on extraction and tracking
of feature points [3]. But, extracting reliable features in
presence of occlusion junctions, and handling of appear-
ing and disappearing features are very difficult. A closely
related class of methods uses block motion vectors instead
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of coordinates of feature points, which is very suitable for
MPEG-2 to MPEG-4 transcoding since motion vectors are
already computed [4]. But, range and accuracy of these
methods are limited by range and accuracy of block motion
vectors. If block motion vector are not available, computa-
tional cost of finding them for a reasonable range of motion
vectors and sub-pixel accuracy can be prohibitive.

1.3. GME in frequency domain

Phase correlation is very popular and efficient technique for
motion estimation [5]. Resampling the Fourier magnitude
spectra on log-polar grid has been introduced to also esti-
mate scaling and rotation using phase-correlation and it has
been used in image registration [6] and global motion esti-
mation [7].

Estimation of affine parameters in frequency domain is
based on Affine Theorem of Fourier Transform [8]. Fourier
shift property is exploited to achieve translation invariance
by taking magnitude of Fourier spectra of images. By work-
ing in this translation invariant (Fourier-Mellin) domain, lin-
ear component A of affine transformation can be determined
independent of translational component B. Once linear com-
ponent has been determined, it can be compensated for and
translation can be determined using Phase-correlation. For
determination of linear component, [9] proposed nonlinear
optimization formulation.

2. MOTIVATION

The basic idea behind proposed algorithm is to model affine
transformation as a deviation from a family of simpler trans-
formation like similarity (RST) which are subsets of affine
transformation and hence, invariably have less than 6 pa-
rameters. We call such transformations as low-order or coarse
approximation of affine transformation. The method con-
sists of finding the coarse approximation in frequency do-
main from downsampled image, then refining (upgrading to
6 parameter affine model) this estimate. In order to formal-
ize this idea we reformulate A in (1) as

A =
[

sxcos (θx) −sxsin (θx)
sysin (θy) sycos (θy)

]
(2)

where, sx and sy can be interpreted as non-uniform scaling
and θx and θy can be interpreted as non-uniform rotation.
Let us define,

mean scaling sm = √
sxsy

differential scaling ds =
√

sx

sy

mean rotation θm = 1
2 (θx + θy)

differential rotation dθ = 1
2 (θx − θy)

Fig. 1. Top Level Block Diagram

Using these definitions, (2) takes following form.

A =
[

sm.ds.cos (θm + dθ) sm.ds.sin (θm + dθ)
− sm

ds .sin (θm − dθ) sm

ds .cos (θm − dθ)

]

(3)
When ds = 1 and dθ = 0, (3) reduces to a similarity trans-
formation, for which log-polar mapping has been widely
used in literature. Similarly, when θx = 0 and θy = 0,
(2) reduces to non-uniform scaling transformation, which
is recovered using log-log mapping. But when considered
separately, these methods are not very attractive since their
range of applicability is very limited. Hence our approach
is to exploit the benefit of each by means of algorithm de-
scribed in the next section.

3. PROPOSED ALGORITHM

Fig.1 shows steps of our proposed algorithm. These steps
are subsequently described.

3.1. Decimation

Since we are using fourier magnitude spectrum as transla-
tion invariant domain, FFT of whole image is needed, which
is prohibitively costly. This problem is alleviated by deci-
mating reference and current images (in our implementa-
tion, by 1

4 along each dimension). For better efficiency, in-
teger low-pass filter was used with very few non-zero bits in
the coefficients.

3.2. Coarse Estimation in Frequency Domain

Decimated images undergo FFT and magnitude extraction.
Since dynamic range of the output of FFT is very high,
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Fig. 2. Coarse Estimation

making interpolation in the frequency domain difficult; this
range is compressed by taking log of magnitude of coeffi-
cients.

Fourier magnitude spectrum is resampled on an adap-
tively selected sampling-grid (Fig.2). For small mean scal-
ing and mean rotation, no remapping is applied to save com-
putations. For small mean scaling, but possibly large rota-
tion, simple polar mapping is used. For small mean rota-
tion, but large and possibly inhomogeneous scaling, log-log
mapping is used. For large rotation and scaling, log-polar
mapping is used. All the decisions are based on past motion
parameters. If past motion parameters are not available e.g.
due to scene change, log-polar mapping is used as default.
Translation between the resampled images is measured us-
ing Phase-correlation method and an estimate of A is in-
ferred from it. For remapping and inferring A, following
relations are used,
Log-Log mapping:

u = sign (x) logα (abs (x))
v = sign (y) logα (abs (y)) A =

[
α−du 0

0 α−dv

]

Log-Polar mapping:

r = logα

(√
x2 + y2

)
θ = arctan

(
y
x

) A = α−dr

[
cos dθ sin dθ
− sin dθ cos dθ

]

Polar mapping:

r =
√

x2 + y2

θ = arctan
(

y
x

) A =
[

cos dθ sin dθ
− sin dθ cos dθ

]

where, α is a suitably chosen constant, depending on size
of image and desired resolution of range space. Exploiting
the hermitian-symmetry of Fourier transform of real signals
θ is restricted to the range [0, π). This estimate of A is used
to warp decimated version of reference image in order to

Fig. 3. Refined Estimation

compensate for linear component of affine transformation.
Again translation estimation is performed, but this time be-
tween current image and warped version of reference im-
age(spatial domain), to get an estimate of translational com-
ponent B = [ dx dy ]T of affine parameters .Here, dx
and dy are shifts measured between current frame and warped
version of reference frame.

3.3. Refinement in Spatial Domain

Proposed refinement approach is based on following rear-
rangement of (1) resulting in planar profiles for x and y
components of motion vectors.

dX = X̃ − X = (A − I2)X + B (4)

After the reference image has been warped in order to com-
pensate for coarse affine parameters, following steps are ap-
plied to find refinement parameters (Fig.3). Ni random
blocks are selected from current image, which also have a
corresponding block in the warped reference frame. This
strategy alleviates, up to some extent, the problem of ap-
pearing and disappearing image regions.
Ni randomly selected blocks are sorted on the basis of ac-
tivity and only top Nf blocks are considered. The aim
of this step is to distinguish between promising and non-
promising blocks for further motion estimation, since low
activity blocks are likely to give wrong motion vectors due
to apperture effect.

Motion vector for each of Nf blocks is computed us-
ing phase-correlation as it provides two advantages as com-
pared to other methods, in this regard: subpixel-accuracy
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Reference Image Current Image

Initial Error Final Error

Fig. 4. Simulation Results

and robustness to minority outlier (foreground) pixels.
Coordinates of center of blocks (x,y) and motion-vector of
blocks (dx,dy) are passed to RANSAC-based robust least-
square plane fitting module [10].

Refinement parameters obtained by RANSAC are com-
bined with coarse parameters by multiplying corresponding
homogeneous affine matrices. Homogeneous affine matrix

is given by

(
A B

01×2 1

)
.

4. SIMULATION RESULTS

In order to test the algorithm for large motion, 1st and 10th

frames of the soccer sequence were used as reference and
current frames. The robustness of algorithm in presence
of differently moving foreground objects is tested by not
using any a-priori foreground-background segmentation in-
formation. Final error image in Fig.4 shows that motion of
background has been well estimated and compensated for.
Algorithm was also used for global motion compensated
Format Conversion and Slow Motion Playback. Results
can be downloaded from http://videoprocessing.
ucsd.edu/global_demo.htm.

5. CONCLUSION AND FUTURE WORK

In this paper we presented a robust and fast global mo-
tion estimation. The algorithm exhibits synergetic combi-
nation of frequency domain methods, which can measure
very large motions but can not be extented in natural way
to higher order motion models, and spatial domain methods
which can handle problems due to occluding and other non-
reliable regions and can be readily used for affine motion
model.
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