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ABSTRACT

A highly accurate and computationally efficient method is 
presented suitable for the estimation of motion in video
sequences. The method is based on the maximization of the
spatial gradient cross-correlation function, which is
computed in the frequency domain and therefore can be
implemented by fast transformation algorithms. We present
enhancements to the baseline gradient-correlation algorithm,
which further improve performance, especially in the 
presence of manually induced additive Gaussian noise. We
also present a comparative performance analysis, which
demonstrates that the proposed method outperforms the
state-of-the-art in frequency-domain motion estimation, in
the shape of phase correlation. 

1. INTRODUCTION 

Motion estimation is a key element of various video
processing tasks such as standards conversion, frame-rate
up-conversion and mosaicing. More importantly it is a 
critical component of video compression systems allowing
redundancy reduction in the temporal domain.
Recently there has been a lot of interest in motion estimation
techniques operating in the frequency domain. Perhaps the
best-known method in this class is phase correlation [1],
which has become one of the motion estimation methods of
choice for a wide range of professional studio and
broadcasting applications [2].
A key performance issue in motion estimation is sub-pixel
accuracy. Theoretical and experimental analyses [11] have 
established that sub-pixel accuracy has a significant impact
on motion compensated error performance. Sub-pixel
accuracy mainly can be achieved through the use of bilinear 
interpolation. Interpolation methodologies are also
applicable to frequency domain motion estimation methods.
However, in this case, interpolation can only be applied as a
separate pre-processing step and, in contrast to data domain
approaches, cannot benefit from the use of fast algorithms.
To circumvent this difficulty alternative approaches have 
been developed and these operate in synergy with the
processing steps required for cyclic correlation.
In this paper we introduce a high-performance version of the
gradient cross-correlation algorithm that was first presented
in its basic form in [12]. The key advances introduced by
this paper are the use of optimal filtering, the use of zero
padding and windowing in the frequency-domain and the
use of alternative curve fitting approaches on the gradient
correlation surface. A significant component of this paper is 

a comprehensive comparative performance study between
our method and a number of state-of-the-art sub-pixel
motion estimation strategies that employ phase correlation.
This paper is organised as follows. In Section 2 the principle
of motion estimation using gradient cross-correlation is
reviewed and a number of novel performance-enhancing
features are introduced. In Section 3 the key features of 
three state-of-the-art sub-pixel motion estimation algorithms
are briefly summarised. In Section 4 experimental results are
reported both in relation to the impact of the performance
enhancing features to the baseline gradient-correlation
method. In addition a comparative performance assessment
is carried out with respect to three state-of-the-art frequency-
domain motion estimation methods based on phase
correlation. Finally, conclusions are drawn and final remarks
are made.

2. SUB-PIXEL MOTION ESTIMATION USING 
GRADIENT CROSS-CORRELATION 

In this section we review the principle of motion estimation
using gradient cross-correlation and introduce the novel
performance-enhancing features of our scheme. The use of 
image gradient information for the purpose of estimating
motion is a well-established concept originating in very
early work on image registration [5], [6] and today featuring
in a number of popular algorithms of the non-matching
variety [7].
Combining the natural advantages of good feature selection,
offered by gradient-based methods with the speed and 
computational efficiency that typifies frequency domain
processing, owing to the use of fast algorithms, is an idea
that has only occasionally been explored in the literature [8], 
[9].

2.1 Computation of the image gradient

It is common ground that the computation of a spatial
gradient of a discrete signal can only provide an 
approximation to the ideal differentiation operator whose
frequency response is of the form fjfg 2)( for 2/|| sff ,

where is the sampling frequency. In digital image

processing common approximations rely on the use of 
forward or central pixel differencing, whose frequency
response is of the form

sf

ssc ffjffg /2sin)( . Using central 

differencing, at each pixel location of a given frame ),( yxtf

discrete approximations to the horizontal and vertical 

gradients can be estimated as ),1(),1(),( yxtfyxtfyxh
tg
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and )1,()1,(),( yxtfyxtfyxv
tg . The two terms are 

combined in a single complex representation of the form

, which retains magnitude and 

phase information at each pixel location.

),(),(),( yxjgyxgyxg v
t

h
tt

Fig. 1. A 3D representation of the magnitude after zero 
padding by a factor of 2 

2.1.1 Optimal filtering

While central pixel differencing was the approach taken in 
our earlier work reported in [12], elementary filter design 
suggests that the addition of more terms can provide a better 
approximation. Work reported in [10] demonstrated that 
more sophisticated discrete approximations to the gradient 
are possible by using a filter optimization approach that
favours a better spectral match at lower frequencies. This is 
an intuitively plausible approach given that a significant 
proportion of a typical image spectrum is clustered in a
lower frequency range and decreases with a rate of 1/f. In 
our work we adopt the approach advocated in [10] and
compute horizontal and vertical gradients using the filter 
coefficients shown in Table I.

TABLE I 
Coefficient for central difference estimators up to 3rd order 

Order c-3 c-2 c-1 c0 c1 c2 c3

1 -1 0 -1
2 1/12 -2/3 0 2/3 -1/12
3 -1/60 3/20 -3/4 0 3/4 -3/20 1/60

2.2 Cross-correlation in the frequency-domain

For pairs of consecutive frames  and  discrete 

gradients
tf 1tf

tg  and  are respectively computed as above. 

The estimation of motion relies on the detection of the
maximum of the cross-correlation function between  and 

. Because all functions involved are discrete, cross-

correlation is circular and for computational efficiency it can 
be carried out as a multiplication in the frequency domain
using fast implementations:

1tg

tg

1tg

1
*)( tGtGIFFT=k,lc 1t,t (1)

where tG and 1tG  are respectively the two-dimensional

discrete Fourier transforms of complex arrays tg  and 

and * denotes complex conjugate. The coordinates
of the maximum of the real part of 

1tg

),( mm lk 1t,tc can be 

used as an estimate of the horizontal and vertical 

components of motion between  and as follows: tf 1tf

)}({Remaxarg),( lk,cmlmk 1t,t (2)

where Re{} denotes the real part of complex array .1t,tc

2.3 Sub-pixel accuracy

Sub-pixel performance is a critical element of the proposed
algorithm. With reference to our previously published work 
[12] we are introducing a number of important new features, 
which improve the accuracy of the motion estimates.

2.3.1 Zero-padding

The first such feature is zero-padding in the frequency
domain. We denote by the two-dimensional

symmetric extension of array 

ptG ,

tG carried out by inserting 

zeros, where p is the zero-padding factor. This is illustrated 
in Fig. 1 for a factor of 2 and for a sample transformed data 
field. Circular cross-correlation of zero-padded arrays is
carried out as in (1) above. In this case the estimate of the
horizontal and vertical components of motion is given by

where are defined as in (2) above. )/,/( pmlpmk mlmk ,

2.3.2 Separable-variable fitting

Zero-padding as an interpolation mechanism has a number
of limitations. It cannot provide estimates of floating point 
accuracy, only estimates whose accuracy is associated with 
negative powers of two. Also, it should be taken into 
account that high values of p carry an implementation
penalty with regard to storage requirements as well 
computational complexity associated with FFT operations. 
In contrast to zero-padding, separable-variable fitting on the 
gradient correlation surface used in [12], is free of many of
the above constraints. In [12] we applied separable-variable 
fitting in the neighbourhood of the maximum using one-
dimensional quadratic functions fitted to the triplet 

. In this paper we 

show that improved performance can be obtained by using a 
Gaussian function fitted to the same data triplet. 

})(),(),({ l,kcl,kcl1,-kc m1t,tm1t,tm1t,t

3. SUB-PIXEL MOTION ESTIMATION USING 
PHASE CORRELATION 

In this section we consider three state-of-the-art sub-pixel 
motion estimation algorithms that have recently appeared in 
the literature. The methods considered are based on the
phase correlation methodology and as such have similar
computational complexity with our scheme.

3.1 Subspace Identification Extension (Hoge) [14] 

This method is based on the observation that a ‘noise-free’ 
phase correlation matrix is a rank one, separable-variable 
matrix. As a consequence, for a ‘noisy’ phase correlation
matrix, the sub-pixel motion estimation problem can be 
recast as finding the rank one approximation to that matrix.
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This can be achieved by using singular value decomposition 
(SVD) followed by the identification of the left and right 
singular vectors. These vectors allow the construction of a 
set of normal equations, which can be solved for the 
required estimate. The author reports good results with 
registration of MRI scanned data. 

3.2 Frequency-Domain Masking (Stone) [13] 

After obtaining an integer-precision alignment of the input 
images the method takes steps towards alias cancellation by 
eliminating certain frequency components. Elimination is 
based on two criteria: (i) distance from highest peak and (ii) 
amplitude in relation to a threshold. The latter is 
dynamically determined and then a plane fitting operation 
on the frequencies that have survived the above two criteria 
yields the required motion estimates. The authors report 
good results with registration of aerial photographs. 

3.3 Polyphase Decomposition  (Foroosh) [4] 

This method uses a model according to which images with 
subpixel shifts are obtained by integer pixel displacement on 
a higher resolution grid followed by subsampling. This 
assumption allows the analytic computation of the 
normalized cross-power spectrum of a pair of downsampled 
images as a polyphase decomposition of a filtered unit 
impulse. By approximating the Dirichlet kernel with a sinc
function after taking the inverse Fourier transform of the 
cross-power spectrum, a closed-form solution for the 
subpixel shift estimate can be obtained. 

4. EXPERIMENTAL RESULTS 

In our experiments we used 2:1 downsampled versions of 
the well-known broadcast resolution MPEG test sequences 
'Mobcal' and 'Basketball'. Both global and local motion 
estimation performance was assessed by applying motion 
compensation using the estimated motion parameters and 
computing either the Mean-Square Error (MSE) or the 
equivalent Peak-Signal-to-Noise Ratio (PSNR). 

4.1 Optimal filtering 

In Fig. 2 (a) we assess the impact of optimal gradient filters 
as discussed in 2.1.1. We compare the 3 filters and our 
results, obtained for the noise-contaminated ‘Basketball’ 
sequence (Gaussian noise 18dB), show that the optimal filter 
of size 5 performs significant better by achieving the best 
balance between faithful spectral matching at lower 
frequencies and rejection of unwanted windows of the 
spectrum. Similar results were obtained using the ‘Mobcal’ 
sequence and for other noise power values. 

4.2 Gaussian fitting

In Fig. 2 (b) we assess performance for two different types 
of fitted surfaces as discussed in 2.3.2. We use variable-
separable fitting independently in the horizontal and vertical 
dimensions. Our results show that Gaussian fitting 
consistently provides a higher level of accuracy.

4.3 Zero-padding 

In Fig. 2 (c) we assess the impact of zero-padding in the 
frequency domain as discussed in 2.3.1. We use variable-
separable Gaussian fitting and the optimal gradient filter of 
size 5 both of which yielded the best performances so far. 
Our results, obtained for the noise-contaminated 
‘Basketball’ sequence, show that the use of zero padding 
consistently yields the best performance with respect to the 
non-zero padded baseline approach. Similar results were 
observed for the ‘Mobcal’ sequence and for other noise 
power values. 

TABLE II 
Average MSE over all measured even-parity field pairs

Mobcal Basketball 

Global Local Noise Global Local Noise

Foroosh 316.8 194.2 1185.7 269.9 229.1 1235.7
Stone 374.9 315.3 1285.9 334.9 342.9 1306.1
Hoge 276.9 236.4 1723.9 273.2 278.7 1783.5

Gradient 234.9 145.3 1103.9 258.8 184.4 1176.9

TABLE III 
The entropy of each algorithm for block based motion estimation 

with and without noise

Mobcal Basketball Mobcal Basketball 

Local Local with Noise 

Foroosh 3.5864299 2.8209298 4.414523 4.411116
Stone 4.8358054 4.3832988 5.305393 5.248677
Hoge 2.9309682 2.2519736 5.022979 5.322726

Gradient 2.7860467 1.9111562 3.278353 3.537585

4.4 Comparative performance assessment 

We compare the performance of the optimized gradient 
correlation scheme above with the three state-of-the-art sub-
pixel motion estimation algorithms based on phase 
correlation as discussed in Section 3, namely the work of 
Foroosh [4], Stone [13] and Hoge [14]. 

Global motion estimation
The first set of experiments aimed at measuring actual 
global motion parameters between even-parity fields for the 
two test sequences. Table II (Global column) summarizes 
the results obtained for the two sequences, by calculating the 
average MSE over all tested field pairs. Our results 
demonstrate that the optimized gradient-correlation method 
outperforms as far as the measurement of actual global scene 
motion is concerned achieving higher precision and a 
significantly smaller corresponding measurement error. 

Local motion estimation 
To measure local motion, the image is typically partitioned 
into blocks (32x32) and one set of motion parameters is 
obtained for all pixels in the same block. The results for the 
‘Mobcal’ and ‘Basketball’ sequences are tabulated in Table 
II (Local column) and confirm the efficiency of the gradient
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Fig. 2. (a) 1st (W3Q), 2nd (W5Q) and 3rd (W7Q) order filtering using Quadratic fitting (b) Gaussian (W5G) and Quadratic (W5Q) fitting
for the 2nd order Gradient filter (c) With (W5ZG) and without (W5G) zero-padding using the 2nd order Gradient filter.

correlation method. Further experiments were performed,
by manually inducing additive Gaussian noise of varying 
power. Figure 3 illustrates the average motion compensated
prediction error computed over all available field blocks 
and for manually induced Gaussian noise of 18 dB. Our
results demonstrate that gradient-based cross-correlation is 
substantially more immune to noise. 
Another metric that was used to assess the performance of 
each algorithm for block based motion estimation is the
entropy of the motion vectors. The results are shown in 
Table III and further confirm that the proposed algorithm
consistently results higher levels of compression and 
motion vector coherence. 

Fig. 3. PSNR versus frame number for local (block-based) 
motion compensated prediction with Gaussian noise

5. CONCLUSIONS 

In this paper we presented a gradient-based cross-
correlation technique for sub-pixel motion estimation in the 
frequency domain. By virtue of a number of enhancements,
namely optimal gradient filtering, gaussian surface fitting 
and zero-padding, performance advantages over the 
baseline method were achieved in terms of measured PSNR
of the motion compensated prediction error. In addition our 
method was shown to outperform the state-of-the-art in
frequency-domain motion estimation using phase 
correlation. One of the most attractive features of the 
proposed scheme is that it enjoys a high degree of

computational efficiency and can be implemented by fast 
transformation algorithms in the frequency domain.
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