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ABSTRACT

In this paper we consider the problem of optimal subsam-

pling of circularly bandlimited images. We show that the

two facets of this problem can be formulated as constrained

sphere packings, and we describe the algorithm that may

be used to solve them. We also compare the resulting sub-

sampling patterns to the more conventional rectangular sub-

sampling and illustrate the potential savings in subsampling

density.

1. INTRODUCTION

Today even moderately-priced digital cameras produce dig-

ital images with resolution in excess of 4 megapixels, and
the trend of increasing the resolution continues. While of-

fering excellent quality, such large images are difficult to

view in native resolution on most computer monitors. In

some cases (e.g. image database browsing) it is necessary

to reduce their resolution - this creates the need for efficient

subsampling strategies. Subsampling is also important in

many other applications, including hierarchical image pro-

cessing, compression, and hierarchical motion estimation.

Recent work on image subsampling includes hierarchi-

cal approaches based on iterative function systems [1] and

artificial neural networks [2]. In [1], the authors construct

hierarchical subsampling patterns with fractal support, while

in [2], an edge-adaptive subsampling approach is proposed.

In this work we are interested in the more basic problem

of optimal subsampling of a circularly bandlimited image.

The assumption of circular frequency support is usually in-

troduced in the absence of prior knowledge about the image,

and is a reasonable one for natural images. The problem of

optimal subsampling has two facets:

1. For a given subsampling factor, find the subsampling

pattern that preserves the largest circular frequency

support.

2. For a given circular frequency support, find the sub-

sampling pattern with the highest subsampling factor.

We consider both of these problems and describe an al-

gorithm that may be used to solve them. The paper is or-

ganized as follows. In Section 2 we introduce the notation

(similar to [3]), review the basics of 2-D subsampling, and
show that the two problems above are dual. In Section 3

we describe the algorithm that directly solves the first prob-

lem. In Section 4 we illustrate how this algorithm can also

be used to solve the second problem, and we compare the

resulting subsampling pattern to the more conventional rect-

angular subsampling. Conclusions are given in Section 5.

2. TWO-DIMENSIONAL SUBSAMPLING

Let X[n], with n = [n1, n2]
T , be a 2-D signal. A subsam-

pled version of X is obtained as Y [m] = X[Vn], where V
= [v1|v2] is a 2 × 2 integer matrix whose column vectors
v1 and v2 are linearly independent. A subsampling factor is

given by |detV|. In other words, Y retains one out of ev-
ery |detV| samples ofX. An illustration of subsampling is
shown in the top part of Figure 1, where the samples of X
are shown as white dots and the samples of Y are shown
as black dots. In the frequency domain, signal Y is repre-
sented as a periodic repetition of the frequency content ofX
(dashed circle), as illustrated in the bottom part of the fig-

ure. The periodicity in the frequency domain is specified by

the matrixU= [u1|u2]whose relationship with the subsam-
pling matrix V is UTV = 2�I. In this text we will consider
the frequency normalized by a factor of 2�, so with this nor-
malization the relationship between U and V is UTV = I.
Hence, detU = 1/detV.
Observe that in order to avoid aliasing, vectors u1 and

u2 need to be large enough so that the dashed circles in Fig-

ure 1 would not overlap. Let us define

dmin(U) = min {ku1k , ku2k , ku1 � u2k , ku1 + u2k} .

Hence, dmin is the minimum of the distances between the
corner points of a parallelogram whose sides are vectors u1
and u2. To avoid aliasing, dmin(U) needs to be larger than
the diameter of the circular frequency content of X. Now

let U=

·
a b
c d

¸
, so V= (UT )�1 = 1

detU

·
d �c
�b a

¸
.

Then we have

dmin(U) =

��
�

�
a2 + c2,

�
b2 + d2,p

(a� b)2 + (c� d)2,p
(a+ b)2 + (c+ d)2

��
�
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Fig. 1. An illustration of 2-dimensional subsampling in the

space domain (top) and the frequency domain (bottom).

and

dmin(V) =
1

|detU|
min

��
�

�
a2 + c2,

�
b2 + d2,p

(a� b)2 + (c� d)2,p
(a+ b)2 + (c+ d)2

��
�

=
dmin(U)

|detU|
,

so for a fixed |detV| = 1/|detU|, maximizing dmin(V) is
equivalent to maximizing dmin(U). With this in mind we
can rephrase the two problems from Section 1 as follows.

1. For a given |det(V)|, findV that maximizes dmin(U)
or, equivalently, maximizes dmin(V).

2. For a given dmin(U), findV that maximizes |det(V)|
or, equivalently, minimizes |det(U)|.

Recall that sphere packing [4] seeks to maximize the

ratio of the volume of the spheres centered at the corners

of the parallelogram described by U to |det(U)|, i.e. max-
imize d2min(U)/|det(U)| [5]. Hence, the first problem is
equivalent to sphere packing in the space domain, and the

second problem is equivalent to sphere packing in the fre-

quency domain. In this sense, the two problems are dual.

The solution to the unconstrained sphere packing problem

in 2-D is known - it is a hexagonal lattice [4]. However, in
our case the samples ofX lie on a 2-D integer lattice Z2, so
they can be subsampled only by an integer matrix. Hence,

we need to solve a constrained version of the sphere packing

problem, which we discuss in the following section.

3. SPHERE PACKING IN Z2

In our previous work [5] we have formulated an algorithm

called ”maximumminimal distance lattice partitioning” that

is aimed at solving the sphere packing problem in Z2. In

this section we review this algorithm in the context of 2-
D subsampling. For a detailed discussion and comparison

with alternative lattice partitioning methods, the reader is

referred to [5].

Let P be the desired subsampling factor. For any 2× 2
matrixV, let SV be the set of matrices obtained by rounding
the elements of V to its nearest integers. Any element of V,

if not itself an integer, can be rounded up or down, so the

set SV can have up to 16 elements. The algorithm proceeds
as follows.

1. Initialization: a =
q
P/(2

�
3), Va =

·
2a a

0 a
�
3

¸
,

� = 0, d�min = 0.

2. Rotation: Va(�) = Va

·
cos � sin �
� sin � cos �

¸
.

3. Check if any V � SVa(�) has both dmin(V) > d�min
and |det(V)| = P ; if so, set V� = V and d�min =
dmin(V�).

4. Update angle: � = � +��; if � � �, go to step 2, else
stop.

After termination, matrix V� is the integer matrix with

|det(V�)| = P that is the ”most similar” to the hexago-
nal matrix Va that would achieve ideal subsampling. The

search for V� can be visualized as shown in Figure 2. Vec-

tors v1 and v2 are equal in magnitude and 60� to each other.
They are obtained by rotating the column vectors of Va by

the angle �. The tips of the vectors show the location of the
points of a hexagonal lattice that would achieve ideal sub-

sampling. However, they do not land on the points of the

integer lattice. Set SV contains the matrices whose column
vectors are the locations of the integer lattice points closest
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Fig. 2. Illustration of the search for approximately hexago-

nal patterns in the Z2 lattice.

to the tips of v1 and v2. In Figure 2, they are the corners

of the two squares shown in gray. Hence, matrices in SV
are integer matrices that are ”similar” to Va(�) and are po-
tential candidates for the optimal subsampling. The angle

increment�� is set sufficiently small so that we don’t miss

any candidate matrices. Details are discussed in [5].

Note that the algorithm is aimed directly at solving the

first problem in Section 1, because it seeks to maximize

dmin(V) for a given |det(V)|. Examples can be found in
[5] and, due to space constraints, we will not repeat them

here. In the following section we illustrate how it can also

be used to solve the second problem, which may not be ob-

vious from the formulation of the algorithm.

4. AN ILLUSTRATIVE EXAMPLE

Suppose we wish to subsample an image so that we retain

the low frequency components in the circular region of di-

ameter 0.27. This can be achieved using a rectangular1 sub-
sampling matrix

Vr =

·
3 2
2 �3

¸
,

because its corresponding frequency periodicity matrix is

Ur = (V
T

r
)�1 �

·
0.231 0.154
0.154 �0.231

¸

1Because the column vectors of Vr are orthogonal and equal in magni-

tude.

Fig. 3. Lowpass filtered image before subsampling; PSNR

= 28.627 dB.

with |dmin(Ur)| � 0.277 > 0.27. This corresponds to the
subsampling factor of |det(Vr)| = 13. On the other hand,
ideal sampling (by a hexagonal lattice) would introduce a

hexagonal periodicity in the frequency domain. One such

frequency periodicity matrix is

U =

·
0.27 0.135

0 0.135
�
3

¸
,

and others can be obtained from U by rotation. The ideal

sampling factor corresponding to the hexagonal lattice would

therefore be |det(
¡
UT
¢
�1
)| � 15.8,which suggests that re-

taining one out of 15 samples is sufficient for our purpose.
For a subsampling factor of 15, the algorithm from Section
3 (with�� = 10�2) produces the following matrix:

Vh =

·
4 3
�1 3

¸
,

which corresponds to the frequency periodicity matrix

Uh = (V
T

h
)�1 �

·
0.200 0.067
�0.200 0.267

¸

with dmin(Uh) � 0.275 > 0.27. Hence, Vh should suffice
for our purpose. We compare the two subsampling matrices

on the 512 × 512 grayscale Lena image. Prior to subsam-
pling, we filter the image with a 30-th order lowpass Butter-
worth filter with the cutoff frequency of 0.27/2 = 0.135 and
the kernel size of 31× 31 pixels. Our goal here is not to ad-
vocate any particular filter, but to illustrate the performance

of the two subsampling patterns. The lowpass filtered image

is shown in Figure 3.

Since 15/13 � 1.15, the signal subsampled by Vh has
about 15% fewer samples than the signal subsampled by
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(a) (b)

Fig. 4. A 100× 100 pixel region in the upper left corner of
the image showing subsampling patterns: (a) rectangular;

(b) approximately hexagonal. From a distance of about 8 -
10 times the height of the figure, the reader should be able
to see that the density of samples in (b) is lower than in (a).

Vr. The difference between the two subsampling patterns

is illustrated in Figure 4, which shows the upper left corner

of the subsampled image. The image is then reconstructed

from its subsampled versions by a two-stage lowpass filter-

ing with the same filter as above. The results are shown

in Figure 5. Observe that the reconstructed images have al-

most the same PSNR and are virtually indistinguishable, yet

the one in the bottom part of the figure was obtained from

15% fewer samples.

5. CONCLUSIONS

In this paper we have considered optimal subsampling of

images with circular frequency support. We have shown

that optimal subsampling in this case reduces to two dual

problems of constrained sphere packing, and we have de-

scribed the algorithm that may be used to solve them. Since

we are constrained to the Z2 lattice, the savings of 13.4%
in sampling density of an ideal hexagonal lattice with re-

spect to a rectangular lattice [3] cannot always be achieved,

because it is not possible to find sublattices of Z2 that are

exactly hexagonal. However, we have demonstrated that

savings of this order (or even slightly higher) are possible,

virtually without sacrificing the quality of the reconstructed

image. The analysis in [5] suggests that it is possible to

find infinitely many sublattices of Z2 that are approximately

hexagonal, and in these cases the savings will be around

13.4%. In the future work we will look into extending these
concepts to higher dimensions.
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