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ABSTRACT

In this paper, we analyze several previous optimization ap-
proaches for weighted vector median (WVM) filters and
show their deficiencies. We then propose two fast adap-
tive WVM optimization algorithms. Proposed algorithm I
computes the optimal weight changes at each iteration, and
updates weights accordingly. Proposed algorithm II extends
the results from weighted median optimization to the vector
case by a generalization of an error metric. Both algorithms
are fast and stable, and perform well under a wide variety of
circumstances.

1. INTRODUCTION

Weighted vector median (WVM) filters were proposed by
Viero et al. [1] for color image sequence filtering. The be-
havior of WVM filter can be controled by a set of weights
assigned to the observation samples. To attain desired be-
havior and characteristics, the weights of WVM filters must
be determined in an optimal manner.

Lucat et al. [2] derived the optimal weights under an Lp

error criteria using a stochastic gradient method. Deriva-
tives of the WVM filter output with respect to the weights
are approximated by differences. Two derivative approxi-
mations were proposed: local approximation and mean out-
put sensitivity. More recently, Lukac et al. [3] tried to ex-
tend the results from weighted median (WM) optimization
to the vector case.

In this paper, we analyze the deficiencies of these pre-
vious algorithms. Specifically, the derivative approxima-
tions [2] are not appropriate, resulting in the instability of
the steepest descent algorithm. The vector extension of fast
LMA algorithm in [3] disregards the crucial direction infor-
mation of vectors and is thus not justified. We propose two
new WVM optimization algorithms. Proposed algorithm I
computes the optimal weight changes at each iteration, and
updates weights to reflect these changes. Proposed algo-
rithm II extends the fast LMA algorithm for weighted me-
dian optimization to the vector case by a generalization of
the error metric. Both algorithms are fast and stable, and
perform well under a wide variety of circumstances.

2. RELATED WORK

For an observation window Ω = {x1,x2, . . . ,xN ∈ R
m}

associated with a set of weights {w1, w2, . . . , wN}, the out-
put of the WVM filter is defined as

y = arg min
x∈Ω

N∑
i=1

wi ‖x − xi‖p , (1)

where ‖ · ‖p denotes the Lp norm. In this paper, only the L1

norm is considered. The goal of the optimization is to find
a set of weights minimizing the cost function E[‖D(n) −
y(n)‖1], where E[·] is the expectation operator, D(n) the
desired output, and y(n) the WVM output.

2.1. Optimization Based on Derivative Approximation

The optimal WVM weights can be solved using a stochastic
gradient method,

wi(n + 1) = wi(n) + µ sgn (D(n) − y(n)) ·
∂y(n)

∂wi

,

(2)

for i = 1, . . . , N and µ is the iteration step size. As noted
in [2], the derivative ∂y/∂wi is null for all i, thus rendering
(2) useless. To overcome this inconvenience, Lucat et al. [2]
proposed two derivative approximations: local approxima-
tion and mean output sensitivity. The local approximation
is computed as

∂y(n)

∂wi

= lim
|δwi|→0

δy �=0

δy(n)

δwi

, i = 1, . . . , N. (3)

Assume wj1
i is the smallest change of weight wi in magni-

tude such that the WVM output changes from sample xj0 to
sample xj1 , then (3) can be written as

∂y(n)

∂wi

=
xj1 − xj0

δwj1
i

, i = 1, . . . , N. (4)
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All the possible changes δwj
i of weight wi such that the

WVM output switches from xj0 to xj can be solved by [2]

δwj
i =

d(xj) − d(xj0)

‖xj0 − xi‖1 − ‖xj − xi‖1
, j = 1, . . . , N, (5)

where d(xj) =
∑N

k=1 wk‖xj − xk‖1. Then the index j1 is
found by

j1 = arg min
j

|δwj
i |. (6)

Substituting (6) into (4), the local approximation of deriva-
tives is obtained.

Lucat et al. [2] also defined a mean output sensitivity to
obtain a more global derivative approximation,

∂y(n)

∂wi

=
1

|S|

∑
xj∈S

xj − xj0

δwj
i

, i = 1, . . . , N, (7)

where S denotes the entire set of potential output vectors
involved when increasing or decreasing the weight wi, and
|S| the cardinality of the set S.

2.2. Weighted Median Optimization Extension

The fast LMA algorithm [4] has been extensively used for
the optimization of weighted median filter:

wi(n + 1) = wi(n) + µ(D(n) − y(n))sgn(xi(n) − y(n)),
(8)

where xi(n) are the inputs, D(n) the desired output, and
y(n) the actual WM filter output. Lukac [3] et al. defined a
signed difference measure for vectors,

S(a − b) =

{
+‖a − b‖p, if |a| − |b| > 0
−‖a − b‖p, if |a| − |b| < 0.

(9)

Then they extended (8) to the vector case:

wi(n+1) = wi(n)+2µS(D(n)−y(n))sgn(S(xi(n)−y(n))).
(10)

3. FAST WVM OPTIMIZATION

3.1. Analysis of Derivative Approximations

To analyze the derivative approximations (3) and (7), we uti-
lize a simplified mathematical model. Two functions JC(w)
and JD(w) are shown in Fig. 1, where JC(w) is a contin-
uous function with a local minimum at w0 and JD(w) is
a piecewise constant function with a local minimum in the
interval [wc, wd]. The steepest descent method is used to
solve for these minimums.

The plot of
∣∣∣∂JC(w)

∂w

∣∣∣ is shown in Fig. 2(a). It can be seen

that
∣∣∣∂JC(w)

∂w

∣∣∣ is continuous, and its value is 0 when w =

w0. When approaching w0 from left or right, the value of

J(w)

wwa wcwb w0

JD(w)

JC(w)

P1 P2

P

δwP1 δwP2

δJP1

δJP2

wd

Fig. 1. Analysis of derivation approximation.

∣∣∣∂JC(w)
∂w

∣∣∣ is decreasing to 0 monotonically. These properties

are necessary conditions required by the steepest descent
algorithm to guarantee convergence at w0.

Now consider JD(w) on the interval [wa, wc], where
wb = (wa + wc)/2. Two points P1 and P2 are on JD(w),
where wa < wP1

< wb and wb < wP2
< wc. Based on the

local approximation (3), the derivative at P1 is computed as

∂JD(w)

∂w
=

δJP1

δwP1

, (11)

where δJP1
and δwP1

are shown in Fig. 1. Note that δwP1

is the smallest change of w in magnitude such that JD(w)

changes its value. It is clear that
∣∣∣ δJP1

δwP1

∣∣∣ → ∞ when wP1
→

w+
a , and

∣∣∣ δJP1

δwP1

∣∣∣ →
∣∣∣ δJP1

wb−wa

∣∣∣ when wP1
→ w−

b . In addi-

tion,
∣∣∣ δJP1

δwP1

∣∣∣ is monotonically decreasing on [wa, wb]. Sim-

ilarly, the derivative approximation
∣∣∣ δJP2

δwP2

∣∣∣ increases from∣∣∣ δJP2

wc−wb

∣∣∣ to ∞ on [wb, wc]. Thus for the interval [wa, wc] on

which JD(w) is a constant, the approximation of
∣∣∣∂JD(w)

∂w

∣∣∣
first decreases from ∞ to a minimum value, then increase to
∞ again. The magnitude of local derivative approximation
of JD(w) is shown in Fig. 2(b). We can see that for each

flat region of JD(w), the approximation of
∣∣∣∂JD(w)

∂w

∣∣∣ first

decreases from ∞ to a minimum value at the middle point,
then increases to ∞ again. This unbounded and discontin-
uous shape of derivative approximation violates the conver-
gence conditions required by the steepest descent method,
resulting in erratic behavior of the optimization based on
local approximation (3).

Since the derivative approximation (7) involves the com-
putation of (4), which has been shown violating the conver-
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Fig. 2. Magnitude of derivative approximation.

gence condition required by the steepest descent method,
the optimization algorithm based on (7) does not produce
satisfactory results either.

3.2. Analysis of WM Optimization Extension

Consider two samples x1 and x2 with same magnitudes,
i.e., |x1| = |x2|. Based on the optimization scheme (10),
the weights w1 and w2 corresponding to x1 and x2 will
be changed by an equal amount regardless of their direc-
tions. For example, if x1 and x2 represent two color pix-
els (255, 0, 0) and (0, 255, 0), their weights will be equally
changed although they represent distinct colors. Thus this
optimization approach [3] is not justified since it disregards
the crucial direction information of vectors.

3.3. Proposed Algorithm I: Fast Greedy Optimization

To address the problems in the derivative approximations
(3) and (7), we propose the following optimization proce-
dures that do not involve derivative computations:

1. Set initial values of filter weights.

2. Compute the cost of each input sample as

ei = ‖xi(n) − D(n)‖1 , i = 1, . . . , N. (12)

3. Find the sample xemin
that has the minimum cost,

xemin
= arg min

x∈Ω
ei = arg min

x∈Ω
‖x − D(n)‖1 .

(13)

4. If xemin
is the current filter output, set ∆wi = 0. Oth-

erwise, compute the necessary weight change ∆wi

(5) so that xemin
becomes the filter output,

∆wi =
d(xemin

) − d(xj0)

‖xj0 − xi‖1 − ‖xemin
− xi‖1

, (14)

where d(·) and xj0 are defined as before.

5. Update the filter weights

wi(n+1) = wi(n)+µ∆wi(n), i = 1, . . . , N, (15)

where µ is the iteration step size.

Since the goal of optimization is to find a set of weights that
minimize the cost function, we search for the sample xemin

with the minimum cost at each iteration. If xemin
is the

current filter output, the WVM weights remain unchanged.
Otherwise, we compute the necessary weight changes such
that xemin

becomes the output and update the weights to
reflect these changes. The weight change ∆wi (14) may
be too large under certain circumstances, and in such cases,
∆wi is clamped such that |∆wi| < T , where T is a thresh-
old.

3.4. Proposed Algorithm II: Fast LMA Vector Extension

The fast LMA algorithm (8) for the WM optimization reg-
ulates the filter weights based on the relations between the
desired output, the actual output, and the inputs. We can
rewrite (8) as

wi(n + 1) =wi(n) − µ(y(n) − D(n))sgn((xi(n) − D(n))

− (D̂(n) − D(n)))

= wi(n) − µ e(y(n))sgn(e(xi(n)) − e(y(n))),

(16)

where e(y(n)) = y(n) − D(n) and e(xi(n)) = xi(n) −
D(n). To extend (16) to vector signals, we define e(y(n)) =
sgn (‖y(n)‖1 − ‖D(n)‖1)·‖y(n)−D(n)‖1 and e(xi(n)) =
sgn (‖xi(n)‖1 − ‖D(n)‖1) · ‖xi(n) − D(n)‖1, and obtain
the following WVM optimization algorithm :

wi(n + 1) = wi(n) − µ e(y(n))sgn (e(xi(n)) − e(y(n)))

= wi(n) − µ eosgn(ei − eo), i = 1, . . . , N

(17)
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where eo = e(y(n)) and ei = e(xi(n)). From the iteration
(17), when ‖y(n)‖1 > ‖D(n)‖1, the weight wi is increased
if ‖xi(n)‖1 < ‖D(n)‖1 or ‖xi(n) − D(n)‖1 < ‖y(n) −
D(n)‖1, and is decreased otherwise. Similar analysis can
be performed for the case of ‖y(n)‖1 < ‖D(n)‖1.

4. RESULTS AND DISCUSSION

As a typical multivariate application, we optimize the WVM
filter for color image denoising. The proposed algorithms
have been used to compute the optimal WVM weights for
denoising various color images, and they perform remark-
ably well under a wide variety of circumstances.

Due to space limit, here we only present one example.
Figure 3 shows the optimization results for a color image
(not shown) from Lucat’s method [2] and the proposed al-
gorithm I and II. The optimal weights for a single realiza-
tion are represented by 5×5 meshes in Figures 3(a), (c), and
(e). The corresponding weight variances for multiple real-
izations of the same noise distribution are shown in Figures
3(b), (d), and (f). It can be seen that the proposed algo-
rithms are extremely stable with nearly zero variances for
different realizations of the same noise distribution, while
Lucat’s algorithm is erratic. The averages and variances of
the mean absolute error (MAE) of WVM filtering with the
obtained optimal weights for multiple realizations are listed
in Table 1, which further demonstrates the superior perfor-
mance of the proposed methods. Furthermore, the proposed
methods are significantly faster than the Lucat’s method [2],
with computation time of 130 seconds vs 500 seconds for a
482 × 467 color image in this example. The size of the
WVM filter used is 5 × 5.

Compared to the algorithm I, the proposed algorithm II
is slightly faster but more sensitive to the step size µ. How-
ever, they have similar performance in terms of optimization
results and numerical stability. Future work includes more
theoretical study of both algorithms, such as convergence
condition and rate, and their adoption to other applications
involving multivariate data.

Table 1. MAE Average and Variance
MAE

Optimization Method Average Variance

Lucat’s algorithm 6.62 5.34
Proposed Algorithm I 4.08 2.61 × 10−5

Proposed algorithm II 4.06 1.07 × 10−4
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Fig. 3. Optimization results for color image denoising.
Plots (a), (c), and (e) show the optimal weights obtained
from Lucat’s algorithm and the proposed algorithm I and II
for a single realization, and plots (b), (d), and (f) show the
corresponding weight variances for multiple realizations of
the same noise distribution. The filter window size is 5× 5.
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