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ABSTRACT

This article shows that image filtering based on SVD favors
the denoising in the line (horizontal) and column (vertical)
direction since the matrix SVD is equivalent to a simultane-
ous line and column vector Principal Component Analysis
(PCA). It also proposes a simple algorithm based on PCA-
filtering processed on a rotated image such that the princi-
pal directions becomes vertical or horizontal. It brings an
important improvement in the final image quality since the
filtering in every image direction is improved.

1. INTRODUCTION

The Singular Value Decomposition (SVD), or eigenvector
analysis, is a classical tool used in two-dimensional grey
scale image processing. An image may be decomposed into
a sum of rank one matrices (images) that can be termed as
eigenimages [1]. The eigenvectors (eigenimages) form an
orthogonal basis for the representation of individual images
in the image set. Although a large number of eigenvec-
tors may be required for very accurate reconstruction of the
image, a smaller number of eigenvectors is generally suf-
ficient to represent the image. This is the basis of the im-
age compression or coding technique known as Karhunen-
Loeve transform. Many studies are actually based on an
SVD analysis [1, 7, 5].

The SVD is also a classical tool used in a filtering frame-
work to reduce noise in a noisy image. Under the assump-
tion of additive noise, the initial image is usually estimated
thanks to a lower rank approximation of the noisy image.
This model implies that the largest eigenvalues are associ-
ated to the signal components and the lowest eigenvalues to
the noise components.

The goal of this paper is to give a deeper analyse of the
SVD-based filtering in order to improve the filtering pro-
cess. Section 2 stresses the equivalence between a ma-
trix Singular Value Decomposition (SVD) and simultaneous
Principal Component Analysis (PCA) of line vectors and
column vectors. In section 3, a pedagogical example shows
that since the SVD analysis an image in the natural lines-
columns image arrangement the useful image information
is spread over several components and associated eigenval-

ues (energy). More over, when a signal has a line-parallel
or column-parallel spatial distribution, then the useful im-
age information is focused on a low number of components
(typically one). In section 4, we propose to use this prop-
erty to improve the filtering efficiency of a noisy image. It
is shown that rotating the image so that the main image ori-
entations becomes parallel to lines (or equivalently to the
columns) and applying the classical SVD based filtering im-
prove the filtering in the considered direction. The main rea-
son of this improvement is that the rotation focusses the sig-
nal information in a less important number of components
and the fewer components describe the signal, the better is
the estimated image quality factor which defines the pro-
portion between noise and signal. Finally, section 5 gives
a simple algorithm based on successive image rotation and
filtering which gives encouraging results in regard to the de-
noising of a real 2D-image.

2. SVD REVIEW AND INTERPRETATION

Let’s first give a brief recall of the Principal Component
Analysis process involved in the first order case. Let’ con-
sider a set of N -dimensional observation vectors {yj =
(y1j , . . . , yNj)T , j = 1, . . . M}. The Principal Compo-
nent Analysis of the set is processed by estimating the co-
variance matrix of vectors: CY Y = 1

M

∑M
j=1 yjyT

j =
1
M [y1, · · · ,yM ]

[
yT

1 , · · · ,yT
M

]T
. The vector set principal

components consist of CY Y covariance matrix eigenvec-
tors.

In the second order case, we propose to give a physi-
cal interpretation of the matrix SVD process. The classical
eigenimage decomposition of a 2D-image (refer to [1, 2])
represents a simultaneous principal component analysis of
the lines and of the columns respectively. Let’s consider a
(I1 × I2) 2D-image represented by matrix A = {aij , i =
1, . . . , I1, j = 1, . . . , I2}. The singular value decomposi-
tion of A processed in the classical eigenanalysis of images
lead to: A = USV T =

∑R
i=1 λiAi. U (resp. V ) is the

matrix of matrix A left (resp. right) singular vectors which
are also matrix AAT (resp. AT A) eigenvectors [4]. R is the
rank of matrix A, λi is its ith-singular value, and Ai = uivT

i

is the corresponding eigenimage.
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Let {yj = (a1j . . . aI1j)T , j = 1, . . . I2} the I1- di-
mensional colum vectors and {xi = (ai1 . . . aiI2)

T , i =
1, . . . I1} the I2- dimensional line vectors of matrix A. The
analysis of the columns (resp. lines) of image A brings ma-
trix A left (resp. right) singular vectors U (resp. V ). Indeed,
considering the previous notations we have:

AAT = [y1, · · · ,yI2 ]
[
yT

1 , · · · ,yT
I2

]T =
∑I2

j=1 yjyT
j ,

AT A = [x1, · · · ,xI1 ]
[
xT

1 , · · · ,xT
I1

]T =
∑I1

i=1 xixT
i ,

(1)
thus, AAT (resp. AT A) is proportional to the column (resp.
line) vector set covariance matrix, up to the multiplicative
factor 1

I2
(resp 1

I1
). As a consequence, the left (resp. right)

singular vectors of matrix A, which are matrix AAT (resp.
AT A) eigenvectors, are the principal components of the col-
umn (resp. line) vector set. In the following, PCA-based
filtering and lower rank approximation of a matrix are used
equivalently.

3. PROPERTIES OF IMAGE PCA

From the previous section it appears that the SVD deter-
mines the principal components of the signal associated to
the natural columns and lines image organization. By con-
struction, the principal components are orthogonal which
means that their corresponding signal are uncorrelated. As
a consequence, any diagonal signal (such as a diagonal line
in an image) cannot be detected as a single component, i.e.
one singular vector. The information related to this diagonal
signal is spread over many components. This property can
be visualized in the following pedagogical experiment, and
also explains the eigenimage analysis and image compres-
sion results of studies [1, 2].

Figure (1-a) shows a diagonal line on a white font. The
eigenvalues extracted from image (1-a) SVD are repre-
sented in figure (1-c). Each eigenvalue can be physically
interpreted as the energy of the corresponding eigenim-
age. Although the energy associated to the first eigenimage
(3·104) is singularly high, the energy of the following eigen-
images, that corresponds smaller and smaller image details,
remains also high between 102 and 103, which means the
image energy is spread over a large number of eigenimages.
This property is verified in image (2-a) in which the lower
rank-15 image approximation (i.e. the sum of the 15 eigen-
images weighted by the corresponding eigenvalues) does
not reconstruct the original image. As can be seen in image
(2-b), representing the lower rank-120 image approxima-
tion, 120 eigenimages are necessary to obtain a satisfactory
reconstructed image.

On the contrary, the information corresponding to verti-
cal image (1-b) is concentrated in the only two first eigen-
images. Indeed, as can be seen in figure (1-d), the energy
associated to the two first eigenimages are superior to 103
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Fig. 1. Diagonal (a) and vertical (b) lines and correspond-
ing eigenimage energy (c) and (d). Image size: (132× 175)

(a) (b) (c)

Fig. 2. Lower rank-15 (a) and rank-120 (b) diagonal line
approximation, and lower rank-1 vertical image approxi-
mation (c).

where as the energy associated to the following eigenimages
are inferior to 10−8. Thus, the vertical line lower rank-1 ap-
proximation, figure (2-c), i.e. the only first principal com-
ponent, is enough to get a satisfactory reconstructed image.

4. PCA-BASED NOISE FILTERING

Let’s make the classical assumption of an additive noise on
every image pixel. A noisy (I1 × I2)-image B can be con-
sidered as the sum of an initial (I1 × I2)-image A and a
(I1 × I2)-image of white Gaussian noise N : B = A + N .

In the PCA-based filtering, initial image A is estimated
by computing the lower rank-R of noisy image B: Â =∑R

i=1 ΛiBi.
For i = 1 to R, Λi is image B ith eigenvalue and Bi is the

associated eigenimage. This estimation represents the sum
of the R first eigenimages of noisy image B, i.e. the simul-
taneous line and column projection of B on the R first line
and columns principal components. R represents the mini-
mum number of components necessary to get a satisfactory
image estimation.

By construction,
∑R

i=1 ΛiBi minimize the quadratic dis-
tance ‖B − C‖2 = tr

[
(B − C)(B − C)T

]
with respect to

C, subject to C being a rank-R matrix [3]. Consequently,
eigenimage Bi is not a pure signal component, but remains
a sum between a signal and a noise component, since B is
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a noisy image. Indeed, with the assumption that noise N
and image A are uncorrelated, the SVD of matrix B leads
to: B = UΣV T , with Σ = diag(Λ1, . . . ,ΛP ), and Λi =
λi + σ2

i , i = 1, . . . Imin. λi and σ2
i are the ith-component

signal and noise energy, and Imin = min(I1, I2). Thus, ma-
trix B eigenvalues represent the sum between the signal and
the noise energy.

According to the previous remark, we define a qual-
ity factor Q which enables us to quantify the proportion
of noise and signal in the estimated image Â, given by

Q(Â) =
∑ R

i=1 λi∑ R
i=1 σ2

i

. The higher Q is the less noise is present

in the estimation, and thus, the better is the filtering qual-
ity. Considering a white noise, i.e. σ2

1 = . . . σ2
N = σ2, the

quality factor of estimation Â becomes:

Q(Â) =
1

Rσ2

R∑
i=1

λi. (2)

As a consequence, one means to increase the filtering
quality, is to reduce the number R of components on which
the signal energy is distributed, since according to (eq. 2),
supposing a constant signal energy

∑R
i=1 λi, a low R im-

plies a high estimation quality factor Q(Â).
This property is verified in the previous examples of sec-

tion 3, in which the energy of the diagonal line (image 1-a)
is spread over 120 components (image 2-b) where as the
energy of the vertical line (image 1-b) is only concentrated
on the first component (image 2-c). Some additive white
Gaussian noise is added to the image of the diagonal line
(3-a) and the vertical (3-b) line, with a SNR=-1dB. Accord-
ing to image 1-d, the filtering quality of the lower rank-1
approximation of the noisy vertical line is logically better
than the lower rank-50 approximation of the noisy diagonal
line since the number of components involved in the ver-
tical line description is lower than the one involved in the
diagonal line description.

5. SVD AND ROTATION BASED IMAGE
FILTERING

As shown in section 4, the fewer components describe the
signal, the better is the estimation quality factor (Q(Â)). In
section 3, it is also shown that the more the principal direc-
tions of an image is aligned with the natural lines or columns
directions (horizontal or vertical), the lower is the number
of components necessary to describe the signal. The signal
energy is focussed on a reduced number of components.

One simple means to make the principal directions of an
image (A, fig. 3-a) be vertical or horizontal is to proceed to
an appropriate image rotation. The resulting rotated image
is comprised in a bigger rectangular image (B, fig. 4-a),
in which the pixels that does not match to the rotated image
are filled with zero values. The lower rank approximation of

(a) (b)

(c) (d)

Fig. 3. Image of noisy diagonal (a) and vertical (b) lines
(SNR=-1dB). Lower rank-50 approximation of noisy diago-
nal line (c) and lower rank-1 approximation of noisy verti-
cal line (d).

NQE for: PCA filtering Rotation-based filtering
Diagonal line 0.19 0.13

Lena 0.27 0.1

Table 1. NQE involved in PCA-based and SVD-and-
rotation-based filtering

image B enables to extract image A principal direction with
a very low number of components. Nevertheless, the num-
ber of components is still larger than one because of rotated
image border effects within B. The effect of the rotation
on the initial image is to focuss the useful information on a
lower number of components. This focussing increases the
PCA-based filtering estimation quality factor Q, and thus
increase the image filtering quality.

In order to a posteriori verify the estimated image quality
we propose to use the Normalized Quadratic Error criterion
(NQE) defined thanks to the matrix Frobenius Norm by:

NQE(Â) =
‖Â − A‖2

‖A‖2
. (3)

The filtering quality of image 4-b, obtained by lower
rank-7 approximation of matrix B (NQE=0.13) is better
than the classical lower rank-50 of the non-rotated image
( given image 3-c, with NQE=0.19), which is confirmed by
the respective NQE given in table 1.

However, in an unknown noisy image, the principal di-
rections, if ever they exist, are also a-priori unknown. We
have shown that rotating an image and applying the PCA-
based filtering improve the filtering quality in the particular
direction of the rotation. Thus, one simple algorithm to im-
prove the filtering quality in every direction of the image
consists in processing the PCA-based filtering for a set of
rotation angles comprised between 0◦ and 360◦, and in av-
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(a) (b)

Fig. 4. (a): 45 rotation of noisy image 3-a. (b): rank-7
approximation of image (a).

eraging the different estimations in a final estimation image.
We expect the averaging of the images obtained after filter-
ing the initial image along several directions to improve the
final filtering compared to the one obtained on the initial
non rotated image.

This algorithm is tested on noisy image 5-b resulting
from the addition of white Gaussian noise on “Lena” stan-
dard image 5-a (SNR=-1.26dB). The classical PCA-based
filtering processed by lower rank-100 of image 5-b is given
in image 5-c (NQE=0.27). The new PCA-rotation based
filtering applied on image 5-b gives better results than the
classical PCA-based method (image 5-d, with NQE=0.1).
The good quantitative results of this statement can be veri-
fied thanks to the NQE computed for the two methods, and
summarized in table 1. In this simulation a set of 180 rota-
tion angles is used, and obtained by proceeding 179 consec-
utive 2◦-rotations from 0◦ to 358◦.

Note that this rotation-based algorithm can be general-
ized to multidimensional data such that color and multi-
spectral images which are modelled by higher order tensors,
and for which new multidimensional and multi-way filtering
methods have recently been developed [6].

6. CONCLUSION

In this article, it is first recalled the equivalence between a
matrix Singular Value Decomposition (SVD) and simulta-
neous Principal Component Analysis (PCA) of line vectors
and column vectors. Then, it is shown that due to the natu-
ral arrangement of matrices in lines and columns, the SVD
favors a vertical and horizontal direction of analysis in an
image. As a consequence, a classical PCA-based filtering
of a noisy image emphasizes the denoising on the vertical
and horizontal directions. It is also shown that the more the
principal directions of an image is aligned with the natu-
ral lines and columns directions (horizontal or vertical), the
lower is the number of components necessary to describe
the signal since the signal energy is focused on a reduced
number of components. Moreover, in a filtering framework,
the fewer components describe the signal, the better is the
estimation quality factor (Q(Â)). Thus, a simple algorithm

(a) (b)

(c) (d)

Fig. 5. (a): Lena standard (256 × 256)-image.(b): Noisy
image (SNR=-1.26dB). (c): Lower rank-100 approximation
of noisy image (b). (d): Mean of lower rank-100 approxi-
mation processed on consecutive 2◦-rotated images.

based on PCA-filtering processed on rotated image such that
some particular image directions becomes vertical or hori-
zontal is elaborated and brings an important improvement
in the final image quality since the filtering in every image
direction is improved.
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