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ABSTRACT

Images exhibiting statistical self-similarity are of interest in
various areas of image processing such as textures and scene syn-
thesis. In continuous-space, statistical self-similarity is defined
through statistics invariant to spatial scaling. However, because of
lack of discrete-space scaling operation, statistical self-similarity
in discrete-space has been characterized by approaches such as in-
crements of fractional Brownian motion rather than scaling. We
address these two issues regarding self-similar random fields through
the paper. We show that the current self-similarity definition for
continuous-space is somewhat restrictive, and we offer a new self-
similarity definition in continuous-space more general than the
current one. Furthermore, we provide a new formalism for sta-
tistical self-similarity in discrete-space by defining a scaling op-
eration for discrete-space images. Consequently, a wider class of
self-similar random images can be synthesized for different appli-
cations in discrete-space. The paper presents theoretical develop-
ment and synthesis examples.

1. INTRODUCTION

Statistical self-similarity in images has received attention for its
ability to describe certain types of natural patterns, which are not
described accurately by other mathematical models. Applications
of such self-similar images include segmentation/classification of
objects in remote sensing images [1], diagnosis through medical
imaging [2], synthesis of natural scenes [3] and classification and
segmentation of texture images [4].

The currently used definition of statistical self-similarity [5]
involves isotropic scaling, or scaling of both axes by the same
factor. However, as we show in this paper, this definition for
self-similarity is not general enough, and other random fields that
would be justified as self-similar in some sense are not covered
by it. Yet another problem we address is that a counterpart to this
continuous-space definition does not exist in discrete-space, and
hence, for digital images. Therefore, other approaches such as
stationary increments of the fractional Brownian motion [6, 7, 8]
have been proposed for discrete-space self-similar random fields.
An approach to defining self-similarity in discrete-space using a
discrete-domain scaling operator was proposed by Zhao and Rao
[9, 10], However, as this paper shows, that approach is also restric-
tive.

The paper rectifies these problems (1) by providing a defini-
tion for statistical self-similarity in continuous-space that is more
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general than the current definition and (2) by developing a for-
malism for self-similarity based on scaling that works in discrete-
space rather than continuous-space.

The paper is organized as follows. Section 2 proposes a new
definition of the generalized self-similarity for random images in
continuous space. Section 3 provides a formulation which con-
ducts the scaling operation in discrete-space and a new defini-
tion for wide-sense discrete self-similar random fields. The algo-
rithm to generate the discrete-space self-similar images and syn-
thesize examples are provided in Section 4. Concluding remarks
are drawn in Section 5.

2. GENERALIZED SELF-SIMILARITY IN CONTINUOUS
SPACE

Samorodnitsky and Taqqu [5] define a statistically self-similar ran-
dom field with Hurst parameter H as a random field x(t) satisfy-
ing

x(at)
d
= aHx(t), a > 0, (1)

where t = [t1, t2]
T , and

d
= denotes equality of the finite-dimensional

distributions. However, the definition, which requires the same
scaling in each coordinate, is somewhat restrictive. For example,
suppose a random field h(t1, t2) is composed of two independent
1-D random processes f(t) and g(t) as

h(t1, t2) = f(t1)g(t2) (2)

where only g(t) is self-similar with Hurst parameter Hg . Then
h(t1, t2) satisfies

h(t1, at2)
d
= aHgh(t1, t2). (3)

Clearly, h(t1, t2) is directionally self-similar. However, such self-
similarity is not accommodated by the definition in (1). The prob-
lem with the definition in (1) is that it is a direct adoption of the
1-dimensional definition of self-similarity, and the additional de-
gree of freedom obtained by moving to 2 dimensions is not used.
We now offer an alternative definition based on matrix scaling that
proves to be more general.

Definition 1 A random field x(t) is self-similar for a matrix class
C with index H if, for a non-singular matrix A ∈ C,

x(At)
d
= |D|H/2x(t) (4)

where D = detA.
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Fig. 1. Block diagram of the 2-D generalized scaling operation

It is now seen that the definition in (1) is a special case of the
new definition and holds for the class of diagonal matrices with
equal entries, i. e., matrices of the form

A =

[
a 0
0 a

]
, a > 0. (5)

On the other hand, the directionally self-similar random field h(t)
in (3) is a self-similar random field with respect to matrices of the
class given by

A =

[
1 0
0 a

]
, a > 0. (6)

3. STATISTICAL SELF-SIMILARITY IN 2
DIMENSIONAL DISCRETE-SPACE

We now formulate a scaling operator in discrete-space that leads to
developing a framework for treating self-similarity on lines anal-
ogous to that for continuous space as in (4). Armed with such
a formalism for discrete-space, we can address the issue of self-
similarity in digital images.

Let f(ω) be a 1-D warping function that transforms a fre-
quency ω ∈ [−π, π] to Ω ∈ [−∞,∞], where ω may be regarded
as the frequency variable in the discrete time Fourier transform of
a discrete time signal while Ω is the same for the continuous time
Fourier transform of a continuous time signal [11]. Then a 2-D
frequency warping transform f(ω) is a vector valued function

Ω � f(ω) = [f(ω1) f(ω2)]
T , (7)

where Ω = [Ω1, Ω2]
T and ω = [ω1, ω2]

T . Its inverse function
f−1(Ω) maps Ω to ω. We define the scaling operation TA[ ] in
2-D discrete-space as

TA[x(n)] � G−1 [|D|X(ΛA(ω))] , (8)

where A is a 2 × 2 matrix,

ΛA(ω) �
[
Λ1(ω1, ω2)
Λ2(ω1, ω2)

]
= f−1[AT f(ω)], (9)

and G−1 is the inverse discrete-space Fourier transform

G−1[X(ω)] =

(
1

2π

)2 ∫ π

−π

∫ π

−π

X(ω)ejω·n dω. (10)

The procedure of the transformation is summarized in Fig. 1.
We now define discrete-space statistical self-similarity using

the scaling operator TA.

Definition 2 A discrete-space random field x(n) is self-similar
with degree H in wide-sense, for a class of matrices C, if it satis-
fies

E[TA[x(n)]] = |D|−H/2E[x(n)]

TAA[Rxx(n, n′)] = |D|−HRxx(n, n′)
(11)

for a non-singular matrix A ∈ C, where Rxx(n, n′) is the auto-
correlation of the image x(n), and D = detA.

The definition reduces to the discrete-space self-similar definition
in [9] if the transform matrix is a diagonal matrix of the form of aI
for scalar a > 0 and identity matrix I.

For a zero-mean stationary random field x(n) with a power
spectrum Px(ω), the self-similar definition (11) can be simplified
as

Px[ΛA(ω)]∣∣∣det
[

dΛA(ω)
dω

]∣∣∣ = |D|−H−2Px(ω). (12)

where

dΛA(ω)

dω
�

[
∂Λ1(ω1,ω2)

∂ω1

∂Λ2(ω1,ω2)
∂ω1

∂Λ1(ω1,ω2)
∂ω2

∂Λ2(ω1,ω2)
∂ω2

]
(13)

One example of such a self-similar random field is a zero-
mean wide sense stationary random field with a power spectrum

P (ω) =
‖f(ω)‖r∣∣∣det

[
d f(ω)

d ω

]∣∣∣ . (14)

It can be shown such a random field is wide-sense self-similar with
H = − r

2
− 1 with respect to

A = α

[
cos θ sin θ
− sin θ cos θ

]
. (15)

With the bilinear warping transform (BLT) f(ω) = 2 tan(ω/2),
the power spectrum (14) becomes

P (ω) =
2r

[
tan2(ω1/2) + tan2(ω2/2)

]r/2

| sec2(ω1/2) sec2(ω2/2)|
. (16)

This power spectrum with r = −1.4 (H = −0.3) is depicted in
Fig. 2.

4. SYNTHESIS OF DISCRETE-SPACE SELF-SIMILAR
RANDOM FIELDS

Unlike the 1-D case, which utilized the factorization of the 1-D
power spectrum to construct a linear filter [11], 2-D factorization is
usually not available. An indirect approach to achieve factorization
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Fig. 2. Power spectrum (16) with r = −1.4

of a 2-D power spectrum is to utilize the (complex) cepstrum of the
autocorrelation of a random field. The cepstrum x̂(n) of a discrete
image x(n) is defined as a 2-D homomorphic transform [12, 13]

x̂(n) � Z−1[ln Z[x(n)]] (17)

where Z and Z−1 represent forward and inverse Z-transform. The
original image x(n) is obtained by

x(n) = Z−1 [exp[Z[x̂(n)]]] . (18)

Let Px(z)|z=ejω be a power spectrum of x(n) and composed of
two factors as

Px(z) = B+(z)B−(z) (19)

Then in cepstrum space (19) becomes

R̂x(n) = b̂+(n) + b̂−(n). (20)

where R̂x(n) is the cepstrum of the autocorrelation Rx(n). The
inverse cepstrum b+(n) from a properly chosen b̂+(n) can lead
to a stable half-plane recursive filter. Then an output x(n) with
the power spectrum Px(ω) of a white noise input w(n) to the
recursive filter b+(n) computed by

x(n) =
∑
n

δ(k)w(n− k) −
∑

R+−(0,0)

b+(k)x(n− k) (21)

where R+ is the non-symmetric half plane and is defined as

R+ � {n1 ≥ 0, n2 ≥ 0} ∪ {n1 < 0, n2 > 0}. (22)

We construct a recursive filter from the power spectrum (16)
using the cepstrum approach . However, since the power spectrum
in (16) contains zero and infinity values, the power spectrum is
modified slightly by adding small constants to compute the cep-
strum. In the case of the BLT, the modified power spectrum is

P̃ (ω) =
2r[tan2(ω1

2
) + tan2(ω2

2
) + c1]

r/2

sec2(ω1
2

) sec2(ω2
2

)
+ c2 (23)

where c1, c2 � 1. Fig. 3 depicts the modified power spectrum
(23) with r = −1.4. Compared with the original power spectrum
in Fig. 2, the plot shows the two to be very close.
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Fig. 3. Modified power spectrum (23) with r = −1.4

Fig. 4. Filter b+(n) with r = −1.4

Fig. 4 shows the generated filter b+(n) when r = −1.4. Filter
taps between [−50, 49] × [−50, 49] are shown in the plots. To
generate a discrete self-similar field, a white noise input is applied
to the filter using recursive filtering in (21). Fig. 5 shows an image
synthesized from the filter.

Fig. 6 shows an example of a directional self-similar random
field. The power spectrum used for this random field is

P (ω1, ω2) =
|f(ω1)|r
|f ′(ω1)|

g(ω2) (24)

where f(ω) is the BLT, and g(ω) = 0.5 (1 + cos(ω)). It can be
shown that the random field is self-similar with H = −r − 1 with
respect to

A =

[
a 0
0 1

]
, a > 0. (25)

For this example, r = −1.2 is used.

5. CONCLUSION

This paper presented new definitions for self-similar random fields
in continuous and discrete-space. We showed that the currently
used self-similarity definition in continuous-space is too restrictive
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Fig. 5. Synthesized discrete self-similar image with r = −1.4

Fig. 6. Directional self-similar image with r = −1.2

and does not cover types of random fields which can be considered
self-similar in some sense. The new self-similarity definition for
continuous-space was proposed based on a scaling operation by a
matrix. Through the new definition, it was possible to express a
wider class of self-similar random fields in continuous-space. The
lack of a scaling operation in discrete-space has been resolved by
defining a new scaling operation for discrete-space using warping.
This discrete-space scaling was utilized to define discrete-space
self-similarity in a way similar to the continuous-case, and it was
also possible to define a wider class of self-similar random fields
in discrete-space. We also provided an algorithm to synthesize
discrete-space random fields from white noise input. Some exam-
ples of images synthesized by the method were provided. Potential
application of the discrete-space random fields include synthesis of
realistic self-similar textures and natural scenes.
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