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ABSTRACT

Images exhibiting statistical self-similarity are of interest in
various areas of image processing such as textures and scene syn-
thesis. In continuous-space, statistical self-similarity is defined
through statistics invariant to spatial scaling. However, because of
lack of discrete-space scaling operation, statistical self-similarity
in discrete-space has been characterized by approaches such as in-
crements of fractional Brownian motion rather than scaling. We
address these two issues regarding self-similar random fields through
the paper. We show that the current self-similarity definition for
continuous-space is somewhat restrictive, and we offer a new self-
similarity definition in continuous-space more general than the
current one. Furthermore, we provide a new formalism for sta-
tistical self-similarity in discrete-space by defining a scaling op-
eration for discrete-space images. Consequently, a wider class of
self-similar random images can be synthesized for different appli-
cations in discrete-space. The paper presents theoretical develop-
ment and synthesis examples.

1. INTRODUCTION

Statistical self-similarity in images has received attention for its
ability to describe certain types of natural patterns, which are not
described accurately by other mathematical models. Applications
of such self-similar images include segmentation/classification of
objects in remote sensing images [1], diagnosis through medical
imaging [2], synthesis of natural scenes [3] and classification and
segmentation of texture images [4].

The currently used definition of statistical self-similarity [5]
involves isotropic scaling, or scaling of both axes by the same
factor. However, as we show in this paper, this definition for
self-similarity is not general enough, and other random fields that
would be justified as self-similar in some sense are not covered
by it. Yet another problem we address is that a counterpart to this
continuous-space definition does not exist in discrete-space, and
hence, for digital images. Therefore, other approaches such as
stationary increments of the fractional Brownian motion [6, 7, 8]
have been proposed for discrete-space self-similar random fields.
An approach to defining self-similarity in discrete-space using a
discrete-domain scaling operator was proposed by Zhao and Rao
[9, 10], However, as this paper shows, that approach is also restric-
tive.

The paper rectifies these problems (1) by providing a defini-
tion for statistical self-similarity in continuous-space that is more
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general than the current definition and (2) by developing a for-
malism for self-similarity based on scaling that works in discrete-
space rather than continuous-space.

The paper is organized as follows. Section 2 proposes a new
definition of the generalized self-similarity for random images in
continuous space. Section 3 provides a formulation which con-
ducts the scaling operation in discrete-space and a new defini-
tion for wide-sense discrete self-similar random fields. The algo-
rithm to generate the discrete-space self-similar images and syn-
thesize examples are provided in Section 4. Concluding remarks
are drawn in Section 5.

2. GENERALIZED SELF-SIMILARITY IN CONTINUOUS
SPACE

Samorodnitsky and Taqqu [5] define a statistically self-similar ran-
dom field with Hurst parameter H as a random field z(t) satisfy-
ing

z(at) < ax(t), a>0, (1)

where t = [t1,%2]7, and £ denotes equality of the finite-dimensional
distributions. However, the definition, which requires the same
scaling in each coordinate, is somewhat restrictive. For example,
suppose a random field h(t1, t2) is composed of two independent
1-D random processes f(¢) and g(t) as

h(ti,t2) = f(t1)g(t2) 2

where only g(t) is self-similar with Hurst parameter Hy. Then
h(t1,t2) satisfies

h(t1, ats) < a9 h(ty, ts). 3)

Clearly, h(t1,t2) is directionally self-similar. However, such self-
similarity is not accommodated by the definition in (1). The prob-
lem with the definition in (1) is that it is a direct adoption of the
1-dimensional definition of self-similarity, and the additional de-
gree of freedom obtained by moving to 2 dimensions is not used.
We now offer an alternative definition based on matrix scaling that
proves to be more general.

Definition 1 A random field x(t) is self-similar for a matrix class
C with index H if, for a non-singular matrix A € C,

z(At) £ | D[22 (t) )

where D = det A.
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Fig. 1. Block diagram of the 2-D generalized scaling operation

It is now seen that the definition in (1) is a special case of the
new definition and holds for the class of diagonal matrices with
equal entries, i. e., matrices of the form

A:{g 2] a>0. )

On the other hand, the directionally self-similar random field A(t)
in (3) is a self-similar random field with respect to matrices of the
class given by

A:[(l) 2}’ a > 0. (6)

3. STATISTICAL SELF-SIMILARITY IN 2
DIMENSIONAL DISCRETE-SPACE

We now formulate a scaling operator in discrete-space that leads to
developing a framework for treating self-similarity on lines anal-
ogous to that for continuous space as in (4). Armed with such
a formalism for discrete-space, we can address the issue of self-
similarity in digital images.

Let f(w) be a 1-D warping function that transforms a fre-
quency w € [—m, 7] to Q € [—o0, 0], where w may be regarded
as the frequency variable in the discrete time Fourier transform of
a discrete time signal while €2 is the same for the continuous time
Fourier transform of a continuous time signal [11]. Then a 2-D
frequency warping transform f(w) is a vector valued function

Q2 f(w) = [fw) fw)]" 0

where Q@ = [, QQ]T and w = [wl,wz]T. Its inverse function
f~1(Q) maps © to w. We define the scaling operation 7a[] in
2-D discrete-space as

Talz(n)] £ G [|D|X (Aa(w))], ®)
where A is a 2 X 2 matrix,

Al (wl, wz)

Aa(w) & L\2(w1,a&)

] =f ' ATE(w)), )
and G~ is the inverse discrete-space Fourier transform

G X (w)] = (i> || x@emao. a0

™

The procedure of the transformation is summarized in Fig. 1.
We now define discrete-space statistical self-similarity using
the scaling operator 7 .

Definition 2 A discrete-space random field x(n) is self-similar
with degree H in wide-sense, for a class of matrices C, if it satis-

fies
E[Ta[z(n)]] = |D|""/Elz(n)]

(11)
Taa[Ree(n, 0')] = |D| ™" Reo(n, 0')
for a non-singular matrix A € C, where Ry, (n, n') is the auto-
correlation of the image x(n), and D = det A.

The definition reduces to the discrete-space self-similar definition
in [9] if the transform matrix is a diagonal matrix of the form of al
for scalar ¢ > 0 and identity matrix I.

For a zero-mean stationary random field z(n) with a power
spectrum Py (w), the self-similar definition (11) can be simplified
as

_Pu[Aa(w)] |D|"H 2P, (w). (12)
]
where
ONq (w1 ,w ONo (w1 ,w
dAA(UJ) A léwll = 2(<9u11 2! (13)
dw - OA (w1,wa)  OAg(wi,wa)
Owo dwg

One example of such a self-similar random field is a zero-
mean wide sense stationary random field with a power spectrum
[£(w)]"

P(w) = (14)

It can be shown such a random field is wide-sense self-similar with
H = —% — 1 with respect to

15)

A:a{cose sinﬁ]‘

—sinf cos6

With the bilinear warping transform (BLT) f(w) = 2tan(w/2),
the power spectrum (14) becomes

2" [tan®(w1/2) + tan® (w2/2)] r/2

Plw) = | sec? (w1/2) sec?(w2/2)]

16)

This power spectrum with r = —1.4 (H = —0.3) is depicted in
Fig. 2.

4. SYNTHESIS OF DISCRETE-SPACE SELF-SIMILAR
RANDOM FIELDS

Unlike the 1-D case, which utilized the factorization of the 1-D
power spectrum to construct a linear filter [11], 2-D factorization is
usually not available. An indirect approach to achieve factorization
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Fig. 2. Power spectrum (16) with r = —1.4

of a 2-D power spectrum is to utilize the (complex) cepstrum of the
autocorrelation of a random field. The cepstrum #(n) of a discrete
image z(n) is defined as a 2-D homomorphic transform [12, 13]

#(n) £ 27 [In Z[z(n)]] (7

where Z and Z ! represent forward and inverse Z-transform. The
original image z(n) is obtained by

x(n) = Z~" [exp[Z[(n)]] . (18)

Let Py (2)|,—.j~ be a power spectrum of z(n) and composed of
two factors as

P.(z) = B+ (z)B_(z) (19)
Then in cepstrum space (19) becomes

Re.(n) = by (n) + b_(n). (20)

where R, (n) is the cepstrum of the autocorrelation R, (n). The
inverse cepstrum by (n) from a properly chosen by (n) can lead
to a stable half-plane recursive filter. Then an output z(n) with
the power spectrum P, (w) of a white noise input w(n) to the
recursive filter b4 (n) computed by

z(n) =Y sKwmn-k) - > bi(kzmn-k) @1

R4 —(0,0)
where R is the non-symmetric half plane and is defined as
Ry 2 {n1 >0,n2 >0} U{ns <0,n2 >0} (22

We construct a recursive filter from the power spectrum (16)
using the cepstrum approach . However, since the power spectrum
in (16) contains zero and infinity values, the power spectrum is
modified slightly by adding small constants to compute the cep-
strum. In the case of the BLT, the modified power spectrum is

2"[tan? (%) + tan®(%2) + c1]™?

sec? (%) sec?(%2)

P(w) = + e (23)

where c1, c2 < 1. Fig. 3 depicts the modified power spectrum
(23) with » = —1.4. Compared with the original power spectrum
in Fig. 2, the plot shows the two to be very close.

Fig. 3. Modified power spectrum (23) withr = —1.4
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Fig. 4. Filter by (n) withr = —1.4

Fig. 4 shows the generated filter b4 (n) when » = —1.4. Filter
taps between [—50,49] x [—50, 49] are shown in the plots. To
generate a discrete self-similar field, a white noise input is applied
to the filter using recursive filtering in (21). Fig. 5 shows an image
synthesized from the filter.

Fig. 6 shows an example of a directional self-similar random
field. The power spectrum used for this random field is

[f (wi)]”
P wi,w2) = glw2 (24)

(orees) = Jp g7
where f(w) is the BLT, and g(w) = 0.5 (1 4 cos(w)). It can be
shown that the random field is self-similar with H = —r — 1 with
respect to

a 0

A_{O 1], a>0. (25)

For this example, r = —1.2 is used.

5. CONCLUSION

This paper presented new definitions for self-similar random fields
in continuous and discrete-space. We showed that the currently
used self-similarity definition in continuous-space is too restrictive
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Fig. 6. Directional self-similar image with r = —1.2

and does not cover types of random fields which can be considered
self-similar in some sense. The new self-similarity definition for
continuous-space was proposed based on a scaling operation by a
matrix. Through the new definition, it was possible to express a
wider class of self-similar random fields in continuous-space. The
lack of a scaling operation in discrete-space has been resolved by
defining a new scaling operation for discrete-space using warping.
This discrete-space scaling was utilized to define discrete-space
self-similarity in a way similar to the continuous-case, and it was
also possible to define a wider class of self-similar random fields
in discrete-space. We also provided an algorithm to synthesize
discrete-space random fields from white noise input. Some exam-
ples of images synthesized by the method were provided. Potential
application of the discrete-space random fields include synthesis of
realistic self-similar textures and natural scenes.
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