
RINGING ARTIFACT REDUCTION IN THE WAVELET-BASED DENOISING

Gun Shik Shin and Moon Gi Kang

Yonsei University
Department of Electrical and Electronic Engineering

120-749, Seoul, Korea

ABSTRACT

Wavelet is a well-known noise reduction tool for its several
nice properties. Since it is a kind of the transform domain,
thresholding in the wavelet domain can cause problems at
the neighborhood of discontinuous points, seen as ringing
artifact in 2-D image. In the low-bit rate network and the
heavy error-prone environment, it is a serious problem for
an end-user. In this paper, we propose an efficient ringing
reduction algorithm based on the standard wavelet decom-
position. Since its structure is the reverse of the wavelet de-
noising method, our algorithm has advantages about com-
putation load and memory efficiency over other ringing re-
duction filters. Experimental results show that the proposed
algorithm reduces ringing along the edge dramatically.

1. INTRODUCTION

Denoising has been used for visually pleasing purpose in
the post-processing step. Nowadays, noise removal gathers
attention from the wide field because the fact that it gives
great efficacy to the subsequent compression algorithm if it
is used as pre-processing. In addition to improving visual
quality, denoising helps detect motion vectors and scene
changes correctly and reduces, literally, noise which acts
like high frequency contents and prevents the efficiency of
run length encoding. As a rule of thumb, by using denoising
as pre-processing, one can get about two times more com-
pression ability than compression standard algorithm alone
does.

Wavelet is a main tool for the denoising with its prop-
erty of good localization in both spatial and spectrum do-
mains, superior separation of noise and signal contents. It
also gives flexibility to make use of several scales, or resolu-
tions with inter or intra dependencies, which combines joint
use of scale and space consistency[1]. Also its basis func-
tions can be chosen optimally according to the applications.
Therefore, wavelet is the most powerful basis for seeing the
forest and the trees simultaneously[2].

In spite of excellent properties of wavelet, it has severe
artifact known as ringing which manifests itself at the strong
edge and in the low-bit rate network. This ringing artifact is

a common problem for the transform domain processing be-
cause of its finite number of basis functions[3]. In the stan-
dard wavelet decomposition, down-sampling process broad-
ens the region of ringing effect. Therefore, ringing artifact
is more complex problem for wavelet than for other trans-
forms.

The simplest method to reduce ringing is not to use down-
sampling process which leads to the notion of, known as
á trous algorithm, time-invariant wavelet unlike standard
wavelet. However, because of the limitation of memory
space, it can not have enough decomposition levels to de-
noise. The efforts to reduce ringing in the standard wavelet
have been made by [4][5]. They used the periodic time-
invariant property of wavelet and proposed SpinCycle al-
gorithm. However, because of its heavy computational com-
plexity, it has problem extending to 2-D image. Another
authors proposed to apply a vector thresholding, but the
computation and the recording of all footprints are pretty
heavy[6].

This paper is organized as follows. Section 2 introduces
theoretical background about wavelet thresholding and ring-
ing artifacts and Section 3 proposes our reduction filter for
ringing artifact. Experimental results are explained in Sec-
tion 4. Section 5 concludes the paper.

2. THEORETICAL BASIS

2.1. Wavelet Thresholding

In the wavelet domain, the problem can be formulated as

y = x + n (1)

where y is a wavelet noisy coefficient, x is an original wavelet
coefficient and n is additive white Gaussian noise. If Max-
imum a Posteriori(MAP) estimation is used, estimate of x
can be obtained by

x̂ = arg max[px|y(x|y)] (2)

= arg max[py|x(y|x)px(x)] (3)

= arg max[log{py|x(y|x)} + log{px(x)}]. (4)
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The subscripts on p are used to denote that px|y, py|x, and
px are different functions. Log function is monotonically
increasing, so it does not affect the estimate of the original.
Various types of prior knowledge can be incorporated into
the form of px(x)[7]. If zero-mean Gaussian assumption is
used, that is,

px(x) =
1√

2πσ2
exp(− x2

2σ2
) (5)

then, the solution is

x̂ =
σ2

σ2 + σ2
n

y. (6)

The above form is the classical Wiener filter, often called
LMMSE filter[8]. On the other hand, if the Laplacian as-
sumption is used as

px(x) =
1√
2σ2

exp(−
√

2|x|
σ

), (7)

then, the estimate can be obtained as

x̂ = sign(y)(|y| −
√

2σ2
n

σ
)+. (8)

Here, (x)+ is defined as

(x)+ =
{

0, if x < 0
x, otherwise.

(9)

Eq. (8) is often called soft thresholding which is first de-
vised by Donoho[9].

The σ in Eq. (6) and (8) can be calculated globally or
locally, but local estimation of σ improves visual quality by
using local adaptivity[10][11].

2.2. Ringing Artifacts

Ringing artifacts are a common problem for the transform
domain processing. Because of the irrelevance between data
in the DCT and the absence of time-invariance in the wavelet,
thresholding is a typical technique for denoising and com-
pression algorithm instead of convolution.

Discontinuous function in the spatial domain is described
by the function of infinite duration with decays to the zero
value in the transform domain. In this case, the truncation of
the small values is a rational choice for memory and com-
putational load. However, this can cause an artifact at the
neighborhood of discontinuous point in the spatial domain,
which is known as Gibbs phenomenon. This is also the case
for the wavelet domain. In the wavelet domain, due to the
spatial and spectrum localization property, it produces over-
shoot with more local and smaller amplitude at the neigh-
borhood of discontinuous point. They are called pseudo-
Gibbs phenomena[12].

0

50

100

150

200

250

(a) Discontinuous function

0

50

100

150

200

250

300

350

(b) Low-frequency part

-20

0

20

40

60

80

100

(c) High-frequency part

Fig. 1. Ringing artifacts in the wavelet domain.

Figure 1a shows a discontinuous 1-D signal and Fig. 1b
and Fig. 1c present wavelet decomposition results. As can
be seen in the figures, Gibbs phenomenon manifests itself as
an overshoot at the discontinuous point in the low-frequency
part. If the low band is further decomposed into second
low and high bands with downsampling, then the region of
ringing in the image is broadened.

3. THE PROPOSED ALGORITHM

Unlike the traditional wavelet denoising algorithm, in the
proposed denoising framework, LL band is also the target
for the denoising. After all bands(including LL band) are
processed the denoised LL band is further decomposed. This
is just the reverse process of the conventional wavelet de-
noising method. In the conventional algorithm, it begins to
manipulate from the finest bands and merge into the coarser
bands, while in our proposed algorithm we start to manip-
ulate from the coarsest bands and split into the finer bands.
If the conventional algorithm is denoted as process / merge
/ process / merge / · · · , the proposed algorithm can be rep-
resented as process / split / process / split / · · · . These struc-
ture can be described as Fig. 2. The shaded region is the
target for the denoising algorithm. In the conventional algo-
rithm, LL bands from the finest scale is not an interest for
denosing while in the proposed algorithm LL band is more
interesting band than any other bandpass bands.

To reduce ringing artifacts, LL band is processed by the
weighted local Wiener filter. Generally, LL band does not
have zero-mean, so slight modifications must be made to
Eq. (6) as follows

x̂ = mL +
σ2

L

σ2
L + σ2

n

(y − mL). (10)
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Fig. 2. Block diagram of the algorithms.

Here, mL and σL denote local statistics. In the local mask,
only the pixels that satisfy |X(i, j) − X(i − s, j − t)| < T
where X(i, j) is center pixel and −M/2 ≤ s, t ≤ M/2,
are used in calculating mean and variance. Here, T is the
threshold value and M is the size of the spatial mask. As T
gets smaller, the resultant image gets noisier. On the other
hand, as T gets higher, the result would be smoother. In the
other bandpass region, that is, LH, HL, and HH, the local
soft thresholding algorithm is applied as in [10].

Noise variance in Eq. (6) and (8) can be obtained by

σn =
med{|Y (i, j)|}

0.6745
(11)

where med{·} is a median function which returns the mid-
dle value in the ordered sequence and Y (i, j) are coeffi-
cients of the coarsest HH band[7]. The median function can
give robustness to the noise estimator and Eq. (11) works
well to various standard images. The proposed algorithm
can be summarized as follows.

Step 1 Estimate the noise variance σ2
n in the noisy image us-

ing Eq. (11).

Step 2 Decompose the image into low and bandpass bands,
that is, LL , LH, HL, and HH bands.

Step 3 Apply the local soft thresholding to the LH, HL, HH
bands and apply the weighted local Wiener filter to
the LL band.

Step 4 Go to Step 2 with setting LL band to image if the
decomposition level requirement is not met, or go to
Step 5.

Step 5 Merge all decomposed bands into the final denoised
result.

4. EXPERIMENTAL RESULTS

In our experiment, we adopted CDF(Cohen, Daubechies,
Feauveau) 9/7 transform as the wavelet decomposition[13].

CDF 9/7 transform has (4,4) vanishing moments. The lift-
ing equation of the transform is as follows[14]

d1(i) = d0(i) − 203
128

{s0(i + 1) + s0(i)} (12)

s1(i) = s0(i) − 217
4096

{d1(i) + d1(i − 1)} (13)

d2(i) = d1(i) +
113
128

{s1(i + 1) + s1(i)} (14)

s2(i) = s1(i) +
1817
4096

{d2(i) + d2(i − 1)} (15)

d(i) = d2(i)/1.149604398 (16)

s(i) = s2(i) × 1.149604398. (17)

Here, s0(i) and d0(i) denote even and odd pixels in the spa-
tial image and s(i) and d(i) represent low-pass and high-
pass decomposed signals. Although Eq. (12)–(17) are ex-
pressed as 1-D form, they can be easily extended to 2-D im-
age using row-by-row and column-by-column processing.

Figure 3a and 3b present original and its corrupted ver-
sion, respectively. The noisy image is 10 dB of SNR, which
amounts to σn = 19.7142. SNR is calculated as

SNR = 10log
||�x||2
||�n||2 . (18)

(a) Original image (b) Noisy image

(c) The conventional algorithm (d) The proposed algorithm

Fig. 3. Results of the conventional and proposed algorithm.
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Cameraman image is good for ringing test because of
its definite difference between background and the coat the
man is wearing. Figure 3c is the result of local soft thresh-
olding with 3 decomposition levels and Fig. 3d is the result
of proposed algorithm with 2 decomposition levels. Both
the algorithms used parameter values with M = 5 and Fig.
3d is the result of the proposed algorithm with T = 90. The
proposed algorithm eliminates ringing along the edge effi-
ciently while it maintains the characteristics in the other flat
area. Undoubtedly, there is no question about the superior-
ity of the result of Fig. 3d over that of Fig. 3c.

5. CONCLUSION

In this paper we proposed an efficient ringing artifact reduc-
tion algorithm in the wavelet-based denoising. Although
wavelet has efficient noise reduction ability, ringing artifact
which is seen in the heavy noise-prone network or low-bit
rate environment is a main obstacle for high visual quality.
Proposed algorithm is just the reverse process of the conven-
tional wavelet denoising method and its computational load
is almost the same as the local soft thresholding method.
Therefore our ringing reduction algorithm requires reason-
able memory and computation relative to SpinCycle[4] and
vector thresholding[6].
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ner, Stéphane Mallat, Yves Meyer, Mary Beth Ruskai,
and Guido Weiss, “WAVELETS : SEEING THE FOR-
EST - AND THE TREES”, National Academy of Sci-
ences, Dec. 2001.

[3] Nirendra K. C. and W. A. C. Fernando, “Effects
of DWT Resolutions in Reduction of Ringing Arti-
facts in JPEG-2000”, Asian Conference on GIS, GPS,
Aerial Photography and Remote Sensing, Bangkok,
Aug. 2002.

[4] R. R. Coifman and D. L. Donoho, “Translation-
invariant de-noising”, Wavelets and Statistics, Vol.
103, pp. 125–150, New York, Springer-Verlag, 1995.

[5] Alyson K. Fletcher, Kannan Ramchandran, and Vivek
K. Goyal, “Wavelet Denoising by Recursive Cycle
Spinning”, IEEE ICIP 2002, Vol. 2, pp. 22–25, 2002.

[6] P. L. Dragotti, M. Vetterli, “Shift-invariant gibbs free
denoising algorithm based on wavelet transform foot-
prints”, Proc. of SPIE Conference on Wavelet Appli-
cations in Signal and Image Processing, San Diego,
Aug. 2000.
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