
AN EFFICIENT BINARY IMAGE ACTIVITY DETECTOR 
BASED ON CONNECTED COMPONENTS 

Patrice Y. Simard and Henrique S. Malvar 

Microsoft Research 
One Microsoft Way, Redmond, WA, 98052, USA 

ABSTRACT 

Activity detection on binary images can be a useful part of image 
processing for detecting noise, texture, printed text, or dithering.  
In this paper we present an image activity detector based on 
computing a density of selected connected components (CCs).  
Connectedness is a useful property because it is present in indi-
vidual printed letters, lines, and edges.  In contrast, salt-and-
pepper noise and dithering are typically composed of a large 
number of disconnected patterns.   By filtering the CCs based on 
size, we can measure different kind of activities, and segment or 
filter the image accordingly.  The activity detector is extremely 
efficient and can be run in a fraction of the time it takes to com-
pute a run-length encoding version of the image.  As an example, 
we built a noise removal filter based on the density of CCs, 
which is both faster and better than a conventional median filter. 

1. INTRODUCTION 

Electronic documents are often formatted as binary images, 
which commonly contain some degradation.  Dithering is used to 
convert color and gray level information to binary.  Bleeding and 
erosion happens when the image is converted to a lower resolu-
tion.  Salt-and-pepper noise result from inappropriate scanning 
settings, paper granularity, pixel noise, etc. 

Text and line art are connected, because it makes them eas-
ier to draw and identify by humans.  Thus, connectedness is a 
feature of human-produced visual information.  Large connected 
component can also be produced by special dithering patterns. 

In this paper we present a fast algorithm to compute an ac-
tivity measure that indicates how busy a document is in a small 
neighborhood of each pixel. The slowest part of the algorithm is 
the computation of connected components (CCs), which can be 
done in almost linear time. We apply the activity measure to 
build a noise removal algorithm that is faster than even a simple 
median filter, but whose performance approaches those of more 
sophisticated systems [1]–[4].  

2. ACTIVITY DETECTOR 

In its simplest form, activity detection assigns to each pixel an 
activity level, whereas activity measures the degree of busyness 

around each pixel. In noise removal applications, areas of low 
activity can be filtered more strongly. In areas of high activity, 
filtering should be lighter to avoid removal of dithering patterns 
or small features such as dots of i’s [1], [2]. 

If we compute activities via combination of highpass and 
median filters, as usual, we incur the expense of running such 
filters at every pixel, which is time-consuming for high-
resolution documents. Complexity gets worse if we add dilations 
operators for smoother activity measures [2] or morphological 
[3] or other post-processing operators [4]. 

For faster processing, we can first represent each scan line 
by a run-length representation. If the operations to be performed 
can be computed on the run-length representation, significant 
speedups can be achieved, since there are many fewer runs than 
there are pixels. Another disadvantage of computing activity 
measure at the pixel level is that they usually cannot benefit from 
long strokes in line drawings or large fonts. 

To reduce the complexity of computing activity detectors, 
we propose a two step-approach: first we determine the con-
nected components in the bitmap, which can be done in the run-
length domain. Then we compute activity measure for a pixel by 
counting the number of CC bounding boxes that intersect a re-
gion around that pixel. That makes the computational complexity 
proportional to the number of connected components, which is 
typically orders of magnitude lower than the number of pixels. 
An arguably positive side effect is that every CC contributes 
equally to activity, e.g. all printed letters have the same activity 
contribution even though a ‘W’ is more complex than an ‘I’. 
Similarly, long strokes from line art increase less the activity 
measure than they do in pixel-based methods. That way, filtering 
operators can be more aggressive in the vicinity of such strokes. 

We compute CCs from a run-length representation of the 
binary image.    The CCs are computed in O(n log*(n)) where n
is the number of runs, and log* is the inverse of the Ackermann 
function, using the union-find algorithm [5].  This algorithm is 
for all practical purposes linear in the number of runs.  Next, we 
compute the bounding boxes of all CCs; this step is illustrated in 
the top line of Figure 1.  Then we compute, for each square 
neighborhood of radius L around each pixel, how many CCs 
bounding boxes intersect that neighborhood. This step would be 
expensive if the computation was done for each pixel independ-
ently.  Instead we compute the contribution of each CC to an 

III - 2290-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



+1+1+1
+1+1+1

+1+1+1

+1+1 +1

+1+1 +1

+1+1 +1

+1+1 +1

+1

-1 +1

+1

+1-1

-1

-1

+2

+1

+2

+2

+1
+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1
+1

+1

+1+2

+1+1 +1 +1+1
+1+1 +1 +1+1

+1+1 +2

+1 +1

+1 +1

+1 +1

+1 +1

+1 +1

+1 +1

+1+1

+1+1

+1+1

+1+1
+1+1

+1+1

+2 +2

+2 +2+2

+2 +2+2

+2 +2+2

+2 +2+2

+2 +2

+1 +1

+1

+1
+1

+1

+1

+1

+1

+1

+1

+1

+1

+1

+1
+1

+1

+1

Figure 1. Top: original image (left) and CC bounding 
box (right); middle: bounding box expanded by 2 
(left), and derivative contribution (right); bottom: inte-
gral (left) and threshold activity (right). 

activity map.  For instance if we want to compute how many CCs 
intersect a neighborhood of radius 2 around a pixel (a 5 by 5 
neighborhood), we expand the bounding box of each CC by 2 
(Figure 1, middle left), and add 1 to each pixel in the activity 
map corresponding to the enlarged region (Figure 1, bottom, 
left).  However, this computation can be further optimized by 
computing the X and Y derivative of each CC contribution and 
adding the derivative to the derivative of the activity map (Figure 
1, middle right).  This latter operation takes only 4 additions per 
CC and is therefore very efficient.  Once all the CCs have con-
tributed to the derivative of the activity map, the derivative is 
integrated with respect to X and Y, to yield to true activity map 
(Figure 1, bottom, left).  The activity map can then be thresh-
olded for segmentation (Figure 1, bottom right). 

Further speed up can be obtained by subsampling the activ-
ity map.  Since the activity map is typically thresholded for seg-
mentation, we often do not need high pixel accuracy.  With little 
loss in precision, one can therefore divide the position of each 
contribution of each bounding box by 2 or 4, and compute the 

activity map integral on an image of 1/4 or 1/16 of the original 
size and achieve the corresponding speedup. 

    To compute diverse activity maps, we can filter the CCs 
according to size.  For instance, in one activity map, we can sum 
the contributions of CCs of size less then R1 pixels, while in an-
other map we can sum the contributions of CCs of size less than 
R2 pixels.  Each activity map can then be thresholded differently, 
as discussed in the next section. 

    Computing the run-length encoding is proportional to the 
number of pixels, but is very fast, since it takes only a test and a 
counter update.  Computing the CCs is proportional to the num-
ber of runs (about 15 operations per run).  Depending on the 
number of CCs, this operation is typically comparable in time to 
computing the run-length encoding.  Filtering the CCs and add-
ing their contribution takes negligible time because it is only a 
few operations per CCs.  Computing the activity map is a double 
integral (2 additions per pixel), which is typically done at half 
resolution (one 4th of the operations) or 1/4 resolution (one 16th

of the operations). 

3. APPLICATION TO SALT-AND-PEPPER 
NOISE REMOVAL 

We applied the algorithm described in Section 2 to the noisy 
1,000×1,000-pixel image in Fig. 2, which was assembled from a 
collection of scans from the same noisy scanner. In the bottom 
figure we highlight in gray the pixels for which the text activity 
measure is greater than 2. That process would be a front end for 
text segmentation, but in itself does a reasonable job in segment-
ing text. Note that the line drawings do not generate regions of 
high activity, whereas many activity detectors reported to date 
include graphics and text in the same category [1], [2]. 

A simple salt-and-pepper noise removal system can be build 
from the algorithm in Section two, in the following way: 

1. Determine D1 as the set of CCs for which the activity meas-
ure is greater than threshold A1, but only CCs with more 
than B pixels are included in the measure. That set is likely 
to include pixels near text areas or dithered areas. 

2. Determine D2 as the set of CCs for which the activity meas-
ure is greater than threshold A2. If A2 is set high enough, that 
set is likely to include only pixels in dithered areas. 

3. Remove CCs with fewer than R1 pixels, except those in D1

or D2 and also CCs with fewer than R2 pixels, except those 
in D2.

The third step basically states that in background areas which 
may contain lines (but not text or dithering) we can remove lar-
ger CCs than in the areas containing text or dithering. Also, in 
regions of dithering we do not remove any CCs. 

We compared our noise remover above with a simple sys-
tem based on median filtering: 

III - 230

➡ ➡



Figure 2. Top: original noisy image used for the ex-
periments; bottom: image where pixels of high text ac-
tivity are highlighted in gray. 

1. From the input image x, compute a difference image u by 
double binary differencing (i.e. x-or from previous pixel, 
across rows and columns). 

2. Given u, compute an activity image a by adding the number 
of u pixels equal to 1 in a neighborhood of dimensions 
2L2+1 × 2L2+1. 

3. Compute the final filtered image y by median filtering the 
input image x, i.e. flipping the values of pixels that are dif-
ferent from the median computed in a region of dimensions 
2L1+1 × 2L1+1, but only in regions where the activity is be-
low a threshold A0.

This noise remover above is one of the simplest in terms of com-
putational complexity. Better results can be obtained with more 
sophisticated system, but at a high computational cost [1]–[5]. 

In Fig. 3 we show the results of processing the noisy image 
of Fig. 2 with the median filter and the CC-based filter defined 
above, for the following choice of parameters (for a strong noise 
reduction): L1=1, L2=10, A0=85; A1=2, A2=30, R1=20, R2=5. We 
see that in graphics and flat regions the CC-based result is much 
cleaner. In the text areas, the CC-based system has also a cleaner 
output, without blurring the characters as in the median filter. For 
the dithered regions, the two systems have comparable perform-
ance. For the median filter, 2.6% of the pixels were modified, 
whereas for the CC-based system only 1.8% of the pixels were 
modified. So, even though the CC-based system modified ~30% 
fewer pixels, it produced a much cleaner output; in other words, 
it made better decisions about which pixels to be modified. 

4. CONCLUSION 

We have presented an activity detector which is based on count-
ing connected components rather than pixel activity.  This detec-
tor has good segmentation properties, while being more efficient 
than pixel-domain filters.  We tested the segmentation by build-
ing a salt-and-pepper noise remover based on connected compo-
nent activity.  When compared to a pixel-based noise remover of 
similar complexity, it yields better results with a faster running 
time.   

      One of the interesting properties of our activity detector 
is that once the connected components have been extracted, we 
can compute multiple activity maps very efficiently.  We believe 
that accurate dithering detection across gradients, multi-scale text 
detection, or complex texture segmentation, cannot be performed 
with a single activity map.  Our approach allows easily pa-
rametrizable activity maps that can be efficiently computed and 
combined.  Future work will focus on automatic selection of 
multiple maps for high-level segmentation. 

REFERENCES 

[1] M. B. J. Ali, “Background noise detection and cleaning in 
document images,” Proc. Int. Conf. on Pattern Recognition 
(ICPR), Vienna, Austria, August, 1996, pp. 758–762. 

[2] R. L. de Queiroz and R. Eschbach, “Segmentation of com-
pressed documents,” Proc. IEEE ICIP, Washington, DC, 
Oct. 1997, pp. 26–29. 

[3] J. Liang and R. Haralick, “Document image restoration 
using binary morphological filters,” Proc. SPIE Document 

III - 231

➡ ➡



Figure 3. Noise removal results. Left column: portions of the original noisy image; center column: output of the median-
based filter; right column: output of the CC-based filter. 

Recognition III, San Jose, CA, 1996, vol. 2660, pp. 274–
285.

[4] K. Chinnasarn, Y. Rangsanseri, and P. Thitimajshima, “Re-
moving salt-and-pepper noise in text/graphics images," 
Proc. Asia-Pacific Conf. on Circuits and Systems 

(APCCAS), Chiangmai, Thailand, 1998. 

T. M. Cormen, C. E. Leiserson, and R. L. Rivest, Introduc-
tion to Algorithms. Cambridge, MA: The MIT Press, 1990, 
p. 448. 

III - 232

➡ ➠


