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ABSTRACT

The problem of recovering two primitive images from their
transparent combination is explored. Given an image sequence,
the case where each primitive image undergoes a dissimilar and
invertible motion over time is considered. The authors show that
discrete samples of the primitive images can be recovered from the
observation of two consecutive image frames. In this context, con-
sideration is given to the density of the recovered sample set and
the requirements for proper reconstruction. On the whole, trans-
parency separation and recovery is an ill-posed inverse problem in
the sense that its solution is not unique. Recovery, however, can
be successfully performed by finding the smoothest solution con-
sistent with the data. Illustrative examples show that the proposed
method provides good estimates of the primitive images.

1. INTRODUCTION

Transparency refers to the phenomenon where an image is per-
ceived as the combination of two or more primitive images. The
origin of such phenomenon is varied. Some common sources are
specular reflections, dark filters, puffs of smoke, gauze curtains,
and cast shadows [1].

Although there are many situations where transparency is ob-
served, we are primarily interested in the case where primitive im-
ages move over time. A number of techniques have been designed
to cope with this particular situation. Among them, there are tech-
niques concerned with motion estimation [2, 3], detection of trans-
parent layers [4] and the recovery of such layers [5]. Here, our
attention will be focused on the latter, that is, on how to estimate
the primitive images from their mixture.

A prototypical approach for transparency separation and re-
covery has been temporal integration after registration [3]. More
recently, new operators have been proposed to replace the tem-
poral integration procedure [5, 6]. Szeliski et al. [5] developed
two techniques. In their first approach a constrained least square
estimation procedure is used to recover the primitive images. In
the second, minimum- and maximum-compositing operations are
used to achieve the same task. In the same line, Weiss [6] proposed
an approach to recover a single reflectance image given a number
of observations where the illumination is the only changing primi-
tive. The approach is formulated as a maximum-likelihood estima-
tion problem where a temporal mean is applied to filtered versions
of the observed images. These methods, however, require a large
number of frames to achieve a clear recovery of the primitive im-
ages. Looking at the problem from a different perspective, Vernon

[7] proposed an approach for recovering two primitive images us-
ing a considerably reduced number of frames. The method oper-
ates in the Fourier domain by relying on the fact that a translation
of the space domain becomes a multiplication by an exponential
of the frequency domain. A conspicuous limitation of this method
is that it is restricted to scenes where motion processes are purely
translational.

In this paper, we provide a better insight to previous results
reported by the authors on the problem of transparency separa-
tion and recovery [8]. Particularly, we expand on issues related to
the recovery of primitive images when large motions are observed.
Altogether, the approach provides a general mechanism to recover
two moving primitive images from two consecutive image frames.

2. PROBLEM FORMULATION

To begin our discussion, let gj : R
2 → R be a primitive image

whose spectra vanishes outside B = {ω̄ : |ω̄| � ω0} and let
ϕj : R

2 → R
2 be an invertible map that describes its motion over

time. Then a time-discrete image sequence generated as the trans-
parent combination of two primitive images can be written as

fi(x̄) = g1(ϕ
i−1
1 (x̄)) + g2(ϕ

i−1
2 (x̄)), i = 1, 2, 3, · · · (1)

where ϕn
j (x̄) denotes the n compositions of the mapping on itself.

The aim is to determine the primitive images g1(x̄) and g2(x̄)
given two consecutive image frames. We assume in this paper
that our observation of the image frames is noise-free and that all
motion processes are known. Although these assumptions are not
normally met in usual conditions, existing filtering and motion es-
timation [2] techniques may alleviate this limitation.

3. TRANSPARENCY RECOVERY

3.1. Preliminary Definitions

We first review some concepts in difference calculus that are core
to the method proposed here. A fundamental concept of this theory
is the finite difference [9], which can be regarded as the discrete
analogue to the derivative. More specifically, let y : Z

∗ → R be
a discrete function. Then the finite backward difference operator
∆ : R → R is defined as

∆y(i) = y(i) − y(i − 1). (2)

This relationship connects the backward difference of a function
with two successive values of that function. Conversely, the term
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integration or antidifference is used to denote the process of find-
ing a function y(i) whose difference is a given function Y (i). Such
operation is denoted by y(i) = ∆−1Y (i). Function y(i) is called
the indefinite finite integral of Y (i). When definite limits are ap-
plied we have the definite finite integral of Y (i), which can be
expressed as

∆−1Y (i) |n1 = y(n) − y(0) =

n∑
i=1

Y (i). (3)

This relationship establishes a connection between the quantity
y(n)− y(0) and the sum of n terms of the given function Y (i). If
y(0), the initial condition, is known, then the function y(i) can be
uniquely determined.

3.2. The Separation Scheme

We now turn to the problem of transparency separation and recov-
ery. Consider a composite image sequence where one primitive
image remains static and the other transforms according to a given
motion map. We write the first two frames of this time-discrete
sequence as

f1(x̄) = g1(x̄) + g2(x̄) (4a)

f2(x̄) = g1(x̄) + g2(φ(x̄)). (4b)

This particular case may seem restrictive when compared to that
of Eq. (1). However, as motion is relative, whatever the given
motion map ϕ1(x̄) may be, the image frame f2(x̄) of Eq. (1)
can be transformed to make the primitive image g1(x̄) appear at
rest when compared to that of the image frame f1(x̄). In which
case, mapping φ(x̄) can be written in terms of ϕ1(x̄) and ϕ2(x̄)
as φ(x̄) = ϕ2(ϕ

−1
1 (x̄)). Consider now the discrete set of points

Jx̄0 , for some x̄0 ∈ R
2, given by

Jx̄0 = {x̄i
0 : x̄i

0 = φ−1(x̄i−1
0 ), x̄0

0 = x̄0, i = 0, 1, 2, · · · }. (5)

The set of points produced in this fashion is referred to as a dis-
crete trajectory. Notice that the set Jx̄0 is isomorphic to the set
Z
∗. As such, operations defined on functions that have Z

∗ as the
definition set can also be formulated on functions defined on Jx̄0 .
Keeping this in mind, we define the following differences:

G1(x̄) = f2(x̄) − f1(φ(x̄)) (6a)

G2(x̄) = f1(x̄) − f2(x̄). (6b)

If we then restrict G1(x̄) and G2(x̄) to the definition set Jx̄0 , we
obtain:

G1(x̄
i
0) = g1(x̄

i
0) − g1(x̄

i−1
0 ) (7a)

G2(x̄
i
0) = g2(x̄

i
0) − g2(x̄

i−1
0 ). (7b)

We can then obtain the values of g1(x̄) and g2(x̄), for any x̄ ∈ Jx̄0 ,
by applying the antidifference operator to these two expressions.
The recovery, however, is unique up to an additive constant value –
the unknown initial conditions. Note that we obtain samples of the
primitive images by integrating along a predetermined trajectory
in the image given by the set Jx̄0 . We can explore the whole im-
age by choosing sufficient starting points x̄0, for example, along
a line crossing the trajectory described by Jx̄0 . We denote the
totality of sampling points, generated through the set of starting
points {x̄0i}m

i=0, as J =
⋃m

i=0 Jx̄0i
. For each of these trajec-

tories, the recovered samples of each primitive image have their

own unknown initial condition. The totality of these unknowns is
denoted here by the set Θ. There is therefore a great deal of ambi-
guity in the recovery of the primitive images as there is nothing to
relate the integrals along adjacent trajectories. This ambiguity can
be removed if additional constraints are introduced.

Before proceeding, notice that in practice our observation of
a given image is confined within the bounds of a viewing frame,
which can be denoted as a closed region Ω ⊂ R

2. The proposed
separation scheme operates by relating two values of an image pat-
tern, each given at a particular position in the image domain. Con-
sequently, for the separation scheme to be able to function, given
an x̄ ∈ Ω there must exist a ȳ also in Ω such that one is the im-
age of the other under transformation φ−1. The aggregate of these
points is given by the set Γ = { x̄ : (x̄ ∈ Ω∧φ−1(x̄) ∈ Ω)∨ (x̄ ∈
Ω ∧ φ(x̄) ∈ Ω)}. Evidently, the region of the primitive images
that can be recovered is limited to the set Γ.

3.3. Finding a Unique Solution

A reasonable assumption that can be used to constrain the solution
is smoothness. The rational behind this assumption is that, except
for a few discontinuities, the intensity of a viewed scene does not
change abruptly. The method we use to compute a solution that is
both smooth and sufficiently close to the data consists in finding
the functions ĝ1(x̄) and ĝ2(x̄) that minimise

∫
Γ

|∇ĝ1(x̄)|2 + |∇ĝ2(x̄)|2 dx̄ (8)

among ĝ1(x̄) and ĝ2(x̄) that satisfy

∑
x̄∈J∩Γ

(f1(x̄) − ĝ1(x̄) − ĝ2(x̄))2 � C. (9)

Eq. (8) is a regularisation term that favours smooth solutions. In
this functional, ∇ denotes the gradient operator and |·| the Eu-
clidean norm. The constraint of Eq. (9) is aimed at restricting the
search to those functions that are close to the data. As the data
is assumed noiseless, the constant C is set equal to zero. Func-
tions ĝ1(x̄) and ĝ2(x̄) are approximation mappings that have the
same values as the recovered g1(x̄) and g2(x̄) for x̄ ∈ J ∩ Γ. For
simplicity, these mappings are taken here as bilinear interpolants.
As they directly depend on the values that the unknown parame-
ters of the set Θ may take, the minimisation simplifies to finding
these parameters. The downhill simplex method, implemented in
MATLAB, is used to conduct the search. Contrary to the regu-
larisation scheme proposed in [8], where the formulation is first
derived for translation motions and then used to face more gen-
eral cases, the method proposed here is better suited to deal with
general motions for it explicitly takes into account the spatial dis-
tribution of recovered samples.

Observe that this approach does not provide a unique solution.
It can be seen that if ĝ1(x̄) and ĝ2(x̄) minimise (8) constrained to
(9), it is possible to construct two further functions ĝ1(x̄) + k and
ĝ2(x̄) − k, for k constant, that also are a solution. To remove this
ambiguity, one of the unknown parameters of the set Θ is arbitrar-
ily set to a constant value.
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3.4. Remarks on the Quality of the Solution

The solution thus obtained does not necessarily reproduce the ac-
tual primitive image patterns but an approximation of them. One
anticipated source of error is the non-conformity of the primitive
images with our prescribed criterion of smoothness [8]. Another
source is the interpolation procedure needed to approximate the
primitive images at all other points not included in J . In what
follows and further on in this section, we assume that images are
defined in R

2 and that a non-bounded set J can be constructed. If
the set J is not sufficiently dense, in other words, sampling points
are sparsely distributed, then our approximation of the images will
not be satisfactory whatever the interpolation method used. This
problem appears when motions are large. We illustrate what we
mean by “large” by considering the simplest motion – translation.
Motion map φ(x̄) can then be written as φ(x̄) = x̄ − v̄, where
v̄ is a constant velocity vector. Clearly, for any x̄0, the trajectory
described by the set of points in Jx̄0 is a straight line. For sim-
plicity, the set J can be constructed by choosing different starting
points uniformly spaced along a line at an angle of the trajectory
prescribed by vector v̄, that is, x̄0i = x̄00 + iw̄, for some x̄00

and some w̄ �= kv̄. Notice that if w̄ is chosen perpendicular to
v̄, then, by the theory of two-dimensional regular sampling, the
primitive images can be exactly reconstructed from their samples
if |w̄| � π/ω0 and |v̄| � π/ω0. The former can easily be satis-
fied; the latter, however, depends on the observed motion. We say
that v̄ is “large” if the latter is not fulfilled. Accordingly, “large” is
a notion directly connected to the bandwidth of the signal we are
dealing with.

In the general case of arbitrary motions, where points in J
may not be uniformly distributed, the results of Clark et al. [10]
on the reconstruction of functions from nonuniformly spaced sam-
ples can be used to assess the density of J . In brief, their result
for the two-dimensional case ([10], Theorem 4) can be stated as
follows. Suppose that a function of two variables f(x̄) is sam-
pled at points in the set J . If there exists a one-to-one continuous
mapping γ : R

2 → R
2 such that the set J is transformed into a

uniformly spaced set of sampling positions U , then the function
h(x̄) = f(γ−1(x̄)) can be exactly reconstructed from its samples
if its frequency content is enclosed by the baseband described by
the sampling set U ([10], condition of Theorem 3: The Uniform
Two-Dimensional Sampling Theorem).

A mechanism that can be used to assess the density of J is
to compare the frequency content of f(x̄) with that of h(x̄) =
f(γ−1(x̄)). Consider a function f(x̄) whose Fourier transform
satisfies F (ω̄) = 0 if ω̄ /∈ B. Assume that the baseband described
by the sampling sequence U tightly encloses the frequency content
of this function. Now, consider the Jacobian of γ−1(x̄),

A =
∂ γ−1(x̄)

∂x̄
. (10)

This quantity can be thought of as an instantaneous linear transfor-
mation of f(x̄). In the frequency domain, this linear transforma-

tion becomes: f(Ax̄)
F−→ 1

|A|F (A−1ω̄), where |A| is the deter-
minant of matrix A. In our case, the instantaneous bandwidth of
f(x̄) for any x̄ is constant and given by B. Then, for frequencies
ν̄ (= A−1ω̄) such that F (ν̄) �= 0, i.e., |ν̄| � ω0, we have

|ω̄| = |Aν̄| � ‖A‖|ν̄| � ‖A‖ω0, (11)

where ‖A‖ is the spectral norm of A. Then, for |ω̄| � ω0 to hold,
in other words, for the instantaneous frequency content of f(Ax̄)

to lie in B, or equivalently, for the instantaneous frequency content
of f(Ax̄) to be enclosed by the baseband described by the uniform
sampling sequence U , the condition

‖A‖ � 1 (12)

must be satisfied. That is to say, A must be nonexpansive. To il-
lustrate this criterion we look once again at the case of pure trans-
lation. Take the uniform sampling sequence U to be of rectangular
geometry, with basis vectors satisfying |ū1| = |ū2| = π/ω0. For
simplicity, assume that ū1 = kv̄, for some k > 0, and that the set
J is constructed using w̄ = ū2. Then, it is not difficult to verify
that for any v̄, the mapping γ(x̄) can be written as a single affine
transformation for the whole image domain and that a diagonal
form of matrix A can be written as diag(1/k, 1). Using now the
criterion of Eq. (12) we obtain that perfect reconstruction is possi-
ble only when k � 1, i.e., when |v̄| = |ū1|/k � π/ω0, as already
known. In general, if ‖A‖ > 1, the situation can be remedied
by augmenting the density of J . This can be accomplished by in-
cluding additional sampling points in such a way that the distance
between the new added points and their neighbours in the existing
set is minimised. Intuitively, we can see that at some point of this
process the criterion of Eq. (12) will be met for the whole image
domain.

Notice that in practice, reconstruction formulas employ a fi-
nite number of samples in a region about x̄. An implication is that
only an approximate reconstruction can be achieved. This limita-
tion, however, is of no major consequence because the support of
an image is finite, anyhow. In addition, the local nature of practical
reconstruction formulas turns to our convenience for two reasons.
Firstly, the determination of the coordinate transformation γ(x̄) is
greatly simplified (a procedure to obtain γ(x̄) is given in [10]);
and secondly, and more important, Eq. (12) is a local constraint:
although it provides a means to draw a conclusion about the in-
stantaneous frequency content of the signal, it does not provide, in
general, an indication of the bandlimitedness of the signal globally.

4. EXPERIMENTAL RESULTS

To determine the performance of the proposed method several tests
were carried out on real images using synthetic motion maps. For
simplicity, each test image sequence was generated according to
Eq. (4). The first frame of the mixture is shown in Fig. 1(c). The
two primitive images g1(x̄) and g2(x̄) are shown in Figs. 1(a) and
1(b) respectively. An affine transformation was used to describe
the motion of g2(x̄). A first test was carried out to explore the
performance of the technique when the motion of g2(x̄) is purely
translation. In this test, the pixels of this image were moving left-
ward at 6 pixels/frame. Figs. 1(d) and 1(e) show the recovered
primitive images obtained from an undersampled reconstruction
of them. As anticipated, the definition of the recovered images
is very poor. The rms errors of these images are 9.72 and 25.31
respectively. Figs. 1(f) and 1(g) show the recovered primitive im-
ages when the criterion of Eq. (12) is satisfied. At a first glance
they are indistinguishable from the original images. Differences
are due to the departure of the primitive images from the idealised
assumption of smoothness. Both images have an rms error of 8.68.
Figs. 1(h) and 1(i) show the recovered images when the motion
is more irregular. Here, the pixels of the primitive image g2(x̄)
also move leftward but have their velocity linearly varied from 4.5
pixels/frame to 2.5 pixels/frame. We included as many additional
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(a) (b) (c)

(d) (e) (f) (g) (h) (i)

Fig. 1. Experimental results. Figs. (a) and (b) are the original primitive images. The first frame of their mixture is shown in Fig. (c).
Results obtained for the case of pure translation are shown in Figs. (d), (e), (f) and (g). Figs. (d) and (e) show the recovered primitive
images obtained from undersampled reconstructions. Figs. (f) and (g) show the recovered primitive images obtained from a dense set of
samples. Results when a more irregular motion was considered are shown in Figs. (h) and (i).

samples as required to comply with Eq. (12). Although the recov-
ered images look very similar to the original ones, their rms errors
are 21.5 and 21.7 respectively. We attribute the differences to the
interpolation and integration procedure needed to recover the im-
ages at the positions specified by J . In these experiments, bicu-
bic interpolation was used. Clearly, small departures of the image
samples from their actual values get accumulated in the integration
process. These errors, which are different for each trajectory, may
also explain the visible ripples in the recovered images.

5. CONCLUSION

We have presented a mechanism for transparency separation and
recovery. The preceding sections of this paper have shown that it is
possible to reconstruct two primitive images from two consecutive
frames when observed motions are invertible. It has been shown
that the primitive images can be perfectly reconstructed along dis-
crete trajectories specified by the observed motions. To be able
to recover the whole image, reconstruction along several of these
trajectories is required. A criterion has been established for deter-
mining if the totality of the chosen trajectories suffices to achieve
proper reconstruction. Part of our continuing work in this area is
aimed at addressing the problems encountered in the experimental
results and the eventual extension to cope with noisy observations.
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