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ABSTRACT

We propose a denoising scheme to restore images degraded
by CCD noise. Typically, restoration algorithms assume a
linear mapping between the incident light space and image
space. However, in practice a camera response function per-
forms a non-linear mapping on the sensor output and as
a result the sensor noise model becomes more complex in
the image space. In this paper, we correct for non-linearity
by mapping the corrupted image into “light space”, where
the relationship between the incident light and light space
values is linear. To reduce the sensor noise we accurately
model the CCD sensor noise by using the Photon Trans-
fer Curve. We then develop a combination of adaptive fil-
ters based on the estimated noise model in light space. Our
adaptive system demonstrates efficient noise removal per-
formance in uniform regions, while preserving edges and
fine details.

1. INTRODUCTION

Digital images are prone to a variety of CCD noise sources,
which can seriously restrict the ability to achieve high qual-
ity images with commercial CCDs [1]. A general model for
a CCD camera system typically includes a sensor, a nonlin-
ear response function, and noise components as shown in
Fig. 1. Light photons strike the CCD sensor and generate
sensor data ¢, which represents the quantity of light inte-
grated over the spectral response of the camera. The sensor
data, ¢, are subjected to CCD sensor noise sources such as
the random arrival of photons, dark current noise, amplifier
noise, and Fixed Pattern Noise (FPN) [1]. The noisy data
then pass through the nonlinear camera response function
F to form the image. This image is then converted to the
final digital image I by an A/D conversion unit. This con-
version introduces quantization noise, but this is negligible
in comparison with sensor noise [2]. Denoising images de-
graded by CCD noise requires an appropriate sensor noise
model. To obtain this model, access to the sensor data is
necessary. Most restoration algorithms assume that the im-
age value or brightness I is a linear function of ¢ [3]. In this
case the noisy image values are proportional to the sensor
data and the strategy for the estimation of sensor data can
be implemented in the image space. In contrast, if the linear
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Fig. 1. Nonlinear camera response function causes image values
to be nonlinearly dependent on sensor data.

assumption is violated, the image noise model will be differ-
ent from the sensor noise model and can be somewhat more
complex. This motivates the estimation of the sensor data
G by applying the inverse of the nonlinear camera response
function, F, to the image data (I), so that ¢ = F ~1(I).
The converted image values, g, lie in a new space called the
“light space” [2]. For applications where the sensor data
is required or where defect in the image originates in light
space, processing the raw camera responses leads to more
satisfactory results [2], and [4].

2. ADAPTIVE FILTERING IN LIGHT SPACE

We use adaptive filters to learn the local signal and noise
characteristics so that the filter parameters can be adjusted
accordingly. Our denoising algorithm consists of three main
stages as shown in Fig. 2. A noisy image is initially con-
verted to light space, then processed using a combination of
Local Linear Minimum Square Error (LLMSE) filters with
different window sizes and an adaptive Wiener filter. The fi-
nal image is a weighted average of individual output images
through a procedure explained in Section 2.3. The follow-
ing sections will describe these procedures in detail.

2.1. Estimation of CCD sensor noise model

We build the sensor noise model using a Photon Transfer
Curve (PHTC) [1]. This curve is a plot of noise standard-
deviation against the noise-free sensor data, g. An example
of a PHTC for a Kodak DCS260 is shown in Fig. 3. APHTC
typically includes three parts, depending on the strength of
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Fig. 3. Photon transfer curve (Kodak DCS260) in the logarithmic
scale. Dotted lines denote the linear approximations to the three
regions. The ¢ values are normalized to the range [0, 1]

the signal [1]. For low signal levels, the curve is almost
flat, implying that noise (mostly amplifier noise) in the dark
areas of an image is independent of the ¢ values. As the
illumination increases, noise becomes more signal depen-
dent (nonzero slope). Shot noise is dominant in this middle
region. The third part of the curve has a sharp rise in com-
parison with previous regions. Fixed Pattern Noise (FPN) is
the dominant noise in this regime.

Since FPN can be removed by a pre-processing proce-
dure [1], we can reasonably assume a two-region PHTC in
which the third region has the same noise characteristics as
the second one. A set of images of a standard uniform ob-
ject with different exposure times are used to generate the
PHTC. Every image is converted to light space. Under the
assumption of zero-mean noise, the noise-free sensor data
are then estimated as the average of ¢ values in each light
space image. Since the scene object is uniform, the image
variance can be used to model the total sensor noise vari-
ance.

From the PHTC it is evident that CCD noise variance is
a function of ¢ and therefore CCD noise is signal-dependent.
Most types of Signal-Dependent Noise (SDN) can be ex-
pressed in parametric form as in [5]:

g(n) = fn)+n(n), ()

n(n) = ou-f7(n) N(n). 2)

where the index n denotes the image coordinate, g refers
to the noisy image, and f is the unknown noise free image.
Sensor noise 77, is defined as a function of f and a zero-mean
unity variance Gaussian noise A. Noise parameters o, 7,
and o, are determined using the PHTC. For instance, on the
logarithmic scale, the intercept of PHTC is o,, and 7 is the
slope in the middle region. Let o, denote the noise standard-
deviation in the first region of the PHTC, ignoring FPN, the
noise standard deviation o, associated with a typical CCD
sensor can be formulated as

on = Oc
S e
When the image intensity is less than a certain value e,
noise can be modeled as constant.

f<eP
ISeB 3)

2.2. Filtering approach

Based on a typical CCD noise model, we describe two fil-
tering approaches to address each noise region. The first
approach deals with SDN, while the latter removes the con-
stant noise from the degraded image in the first noise regime.
Many attempts have been made to restore the images de-
graded by SDN [6], [7], and [8]. In [8], a LLMSE filter is
applied in the wavelet domain to restore images degraded by
SDN whose model is denoted in Eqn. 2 . Uniform patches
are determined from the noisy observation, and used to esti-
mate the noise parameters y and o, [9]. However detecting
the uniform image regions from the noisy image is challeng-
ing when dealing with SDN. Consequently the estimated
noise parameters may not be accurate. In this work we ac-
curately estimate the noise parameters using the PHTC as
mentioned in Section 2.1. We also apply a spatial adap-
tive filter in light space using the same filter structure as
explained in [8]. In particular, the filter formulation is

. o2(n) o2(n)
f f
=|1- . 4
fLLMSE(n) ( 0_3 (n) Myt 0_3 (TL) g(n) 4)
where n refers to the image index, fLLM < 1s the noise-less

estimate, g is the noisy image, UJ% and py are the noise-

free local statistics, which need to be estimated based on the
noisy local variance 02, local mean 4, and prior knowledge
of noise model. Since we assume that the Gaussian noise is
independent of the noise-free image f, there is no corre-
lation between f and the Gaussian noise, thus p1y = pg.
Furthermore ¢ (n) can be written as

o) =07+ o, B[f7]. 6)
We drop n for notational simplicity. To simplify the expres-
sion for E[f*7(n)], we use the Taylor series expansion of
f?7 around 14, so

E[f*] ~ uy +v(2y = Dup "o}, 6)
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Finally o2 can be summarized as

o, = of(n)+oy E[f*7(n)]
= o}+o, (,uff +v(2y — 1)/1?@7_20?)
o2 — g2 2y
-0} = o Tuby : (7)

L+9(2y - )i %03

Therefore f

. . 2 .
Luse 18 @ function of o, p14, and the noise
parameters:

2y
(1-02- %) (9(n) — 1)
1+7(2y = Dy’ 02

fLLMSE(n) = + pg- )

As indicated by Eqn 4, the filter adapts to local statistical
variations such that uniform regions are smoothed, while
edges and fine details are invariant to the averaging process.
When the local image region is uniform, the estimated UJ%
is considerably smaller than the corresponding aj, causing

o

2
the ratio _£ to be close to zero. Thus the filter puts most of

the weightgon ftg, smoothing the areas. Conversely, in the
0'2 .
presence of a sharp edge, £ is close to one, and as a result
g
the filter puts more weight on the noisy values, g. In this
case the edge sharpness is preserved.
However, LLMSE filters based on Eqn. 8 perform poorly

in dark areas, because noise in dark areas is signal-independent.

We apply a standard adaptive Wiener filter to deal with signal-
independent noise with known variance o .. This filter cre-
ates a pixel-wise Wiener filter using the local estimates fi,
and o7 [5]:

Jwiener (n) =H

2.3. Merging maps

In addition to the filter structure, the window size also af-

fects the filter performance. As mentioned earlier, the LLMSE

filter prevents edge blurriness by assigning less weight to p 4
in non-uniform regions, however this creates artifacts in the
vicinity of sharp edges. The distortion width around the
edges depends on the window size of the filter. The bigger
the window size, the broader the distorted region. Employ-
ing an LLMSE filter with small window size would reduce
this problem at the expense of poor averaging performance
due to the reduced number of samples in each local patch.
To perform well in uniform regions, while reducing the ar-
tifacts, we apply two LLMSE filters with 3 x 3 and 9 x 9
window sizes. We then provide a smooth edge map to blend
the outputs of these two filters. The results are combined
so that the filter with smaller window size is dominant in
edge regions, but gradually reduces its influence in uniform

regions where the second filter becomes dominant. To do
this, a binary edge map is initially generated by thresholding
the ratio between the estimated o'} to ¢, This binary map
is then morphologically dilated [10] to let the edges diffuse
throughout a small neighborhood, creating a smooth transi-
tion between the two LLMSE filters as shown in Fig. 4. The
output image at this stage is a local nonlinear MSE filter,
LNMSE.

The final LNMSE filter result is then merged with the re-
sults of the adaptive Wiener filter result (Fig. 2). A sigmoid-
like weighting function assigns all the weight to the Wiener
filter where the signal-independent noise is the dominant
noise. For image intensities close to eB, the output is the
weighted average of two filters. The LNMSE filter is dom-
inant for image values beyond e®. The weight graph is
shown in Fig. 4 (right). This approach is similar to the work
in [11], which is based on a more simplistic CCD noise
model assumption. Edges are preserved by using a surface
diffusion model combined with a min/max curvature, where
the diffusion rate varies as a function of edges.

‘Weighting Function

Fig. 4. (left) Cropped “Lena” edge map. (right) Sigmoid-like
weighting functions (solid curves) provides a smooth mapping
around the breakpoint e between the adaptive Wiener and LN-
MSE filters.

B Image Intensity

3. SIMULATION RESULTS

For experiments, a set of noise-free images are initially con-
verted to light space. Synthetic noise, based on the model
shown in Fig. 3, is then added to the images in light space.
We then process the degraded images by applying two LLMSE
filters and a standard adaptive Wiener filter in light space.
The results are then combined using the two merging maps.
As shown in Fig. 5, the performance of the 3 x 3 LLMSE
filter in uniform regions is poor, but the edges are preserved.
In contrast the 9 x 9 LLMSE significantly smooths the uni-
form areas, but generates artifacts in edge regions. Com-
bining the two LLMSE filters deals with the artifact prob-
lem. Fig. 6 shows how the weight function combines the re-
sults of the LNMSE, and adaptive Wiener filters. As shown,
the adaptive Wiener filter blurs the image, while the LN-
MSE filter performs poorly in dark regions. These problems
are removed by applying this map on both output images
and combining the results. Overall, these figures illustrate
that our final combined filter outperforms adaptive Wiener,
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Fig. 5. Effect of edge map on artifact reduction: (top left) cor-
rupted “Lena” image with v = 0.3 and o, = 0.05, (top right)
filtered image with a 3 x 3 LLMSE filter, (bottom left) a 9 x 9
LLMSE filtered image, and (bottom right) the LNMSE result.

LLMSE, and LNMSE filters by smoothing uniform regions
and removing the artifacts around the edges, the blurriness
effect of Wiener filter, and the remained errors in the dark
regions.

We also compute Mean Square Error (MSE) as a quan-
titative noise-attenuation measure. Table 1 provides MSE
values for various values of v and compares the perfor-
mance of adaptive Wiener, LNMSE, and the final combined
filters. As shown, noise level in the final combined image is
significantly lower than the other filtered images.

Table 1. MSE measures of the “Peppers” image for three values
of ~y.
ol Noisy = Wiener LNMSE Final combined

0.3 323481 98.736  100.066 65.134
0.5 104.889 94.897  39.488 38.226
0.7 35048 94.161  24.888 18.225

4. CONCLUSION AND REMARKS

In this paper we presented a restoration algorithm for im-
ages degraded by CCD sensor noise. Images are converted
to light space, where the relationship between the incident
light and the light space values is linear. Using a noise
model that is based on the PHTC, light space denoising
enables the design of a simpler and more straightforward
restoration algorithm. Simulation results show a promising
performance; uniform regions are smoothed, while abrupt
changes such as edges are preserved. In future work, we
plan to investigate denoising in wavelet-based light space
domain.

Fig. 6. Effect of the weight function: (top left) cropped “Peppers”
image degraded by o, = 0.04 and v = 0.3, (top right) adap-
tive Wiener estimate, (bottom left) LNMSE estimate, and (bottom
right) final combined denoised image.
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