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ABSTRACT

This paper introduces a method for spatial error concealment of
lost image data in erroneous image transmission. The image con-
tent of the correctly received surrounding blocks is successively
approximated by a weighted linear combination of basis functions
and the missing block is obtained by extrapolation. An imple-
mentation in the frequency domain allows an efficient realization.
Investigations show that particularly 2D DFT basis functions are
suited for the signal extrapolation in order to be able to reconstruct
both monotone areas and edges.

1. INTRODUCTION

Transmission of images or videos coded by block based techniques
like JPEG or MPEG in error prone environments may lead to block
loss. Therefore error concealment at the decoder side has to be ap-
plied. Commonly, two approaches are used in error concealment.
On the one hand spatial error concealment uses the surrounding
correctly received image information. Temporal error concealment
on the other hand exploits motion information. In image transmis-
sion and intraframe coded video transmission spatial error con-
cealment is applied due to the lack of motion information.

A standard approach of Wang et. al [1] assumes that the image
content is changing smoothly. Hence the algorithm tries to restore
the transition across the block boundary as smooth as possible.

The pixel-based method of [2] predicts each pixel from the avail-
able next neighbors. The missing block is pixel-based reconstructed
from eight directions and given by a weighted linear combination
of these reconstructed blocks. Hence, the method is computation-
ally very complex.

Additionally methods implemented for comparison are described
in [3], [4] and [5].

2. SPATIAL ERROR CONCEALMENT

2.1. Discrete Linear Approximation

In [6] a method of object based coding was developed. The texture
of an area is successively approximated and then cut to the shape
of the object. This principle is used in this paper for error conceal-
ment by estimating the missing image content using the surround-
ing area. The image content of the known blocks is successively
approximated and the missing block obtained by extrapolation (see
Fig. 1).
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Fig. 1. The known area
�

(gray) is approximated by a parametric
model and the missing area � � �

(white) obtained by extrapola-
tion.

The gray values of the pixels are denoted by f [m, n] whereas
m indicates the row and n the column. In order to approximate
the known blocks, a parametric model g[m, n] is defined being a
weighted linear combination of basis functions. Assuming two-
dimensional DFT basis functions

ϕk,l[m, n] = ej 2π

M
mkej 2π

N
nl (1)

the following parametric model is obtained

g[m, n] =
1

2MN �
(k,l) � 
 (ck,lϕk,l[m, n] +

cM � k,N � l ϕM � k,N � l[m, n]). (2)

ck,l denote the complex expansion coefficients and � the set of
used basis functions. The image signal f [m, n] and thus also its
parametric model g[m, n] are real signals. Therefore the following
holds

cM � k,N � l = c k,l as well as (3)

ϕ M � k,N � l[m, n] = ϕk,l[m, n] (4)

whereas the considered block has size M � N .
An error criterion E � between the original signal and the para-

metric model is established

E � = �
m,n � � (f [m, n] � g[m, n])2 , (5)

however, only evaluated at known pixels (m, n) � �
. The set �

is the set of all pixels whereas the gray area
�

denotes the known
pixels in Fig. 1. In order to minimize the error criterion, (5) is
partially derived with respect to the expansion coefficients and set
to zero

∂E �
∂ck,l

= 0 and
∂E �

∂cM � k,N � l

= 0 (6)
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This leads to a set of linear equations which is unfortunately not
uniquely resolvable because more basis functions, i.e.(M � N ),
are available in the approximation than pixels in

�
. In order to

obtain a solution the principle of successive approximation is ap-
plied. This iterative algorithm computes one expansion coefficient
per iteration. Hence, the image content is described by a few dom-
inant features, i.e. by a weighted linear combination of a few se-
lected basis functions. Therefore a suitable basis function has to
be selected which is described in Sec. 2.3 and the update of the
respective expansion coefficient in Sec. 2.2.

2.2. Principle of Successive Approximation

In the following the computation of the expansion coefficient cν+1
u,v

in iteration ν + 1 is described assuming a suitable basis function
with index u, v has already been selected. Hence, the following
approximation is available in iteration ν

g(ν)[m, n] =
1

2MN �
(k,l) � � ν

(c
(ν)
k,l ϕk,l[m, n] +

c
(ν)
M � k,N � l ϕM � k,N � l[m, n]) (7)

with � ν denoting the set of used basis functions. Defining the
window function

w[m, n] =

�
1 , m, n � �
0 , m, n � � 
 A

(8)

we can express the residual error signal in the known area (m, n) ��
as

r(ν)[m, n] = (f [m, n] � g(ν)[m, n]) � w[m, n]. (9)

In the following the residual error signal in the next iteration is
derived. The residual error signal in the known area is further ap-
proximated by a weighted suitable basis function

r(ν+1)[m, n] = r(ν)[m, n] � (10)
1

2MN
(∆cϕu,v[m, n] + ∆c � ϕM � u,N � v [m, n]) � w[m, n].

The coefficient ∆c is obtained by minimizing the error criterion
for the residual error according to (5) which is after some compu-
tations equivalent to solving

∆c �
(m,n) �  ϕu,v[m, n]ϕM � u,N � v [m, n]+

∆c � �
(m,n) �  ϕM � u,N � v [m, n]ϕM � u,N � v [m, n]

= 2MN �
(m,n) �  r(ν)[m, n]ϕM � u,N � v [m, n]. (11)

Analogously, a conjugate complex equation is obtained to (11).
In order to update c

(ν+1)
u,v , the coefficient c(ν)

u,v is modified by ∆c

c(ν+1)
u,v = c(ν)

u,v + ∆c (12)

c
(ν+1)
M � u,N � v = c

(ν)
M � u,N � v + ∆c � (13)

The conjugate complex coefficient is updated due to symmetry re-
quirements.

The index u, v is included in the set of selected basis functions

� ν+1 = � ν � � u, v � if u, v /� � ν . (14)
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Fig. 2. Search area for DFT basis functions

2.3. Selection of Suitable Basis Function

In the last section the expansion coefficient corresponding to a se-
lected basis function was computed. In the following, the selection
of a suitable basis function ϕu,v[m, n] is derived.

First the energy of the residual error signal is computed in the
known area

�
(m,n) �  (r(ν+1)[m, n])2 = �

(m,n) �  (r(ν)[m, n])2 � (15)

1

(2MN)2 �
(m,n) �  (∆cϕu,v[m, n] + ∆c � ϕM � u,N � v [m, n])

2

taking into account that the residual error in the next iteration is or-
thogonal to the selected basis function. Furthermore, the residual
error energy is decreased in each iteration as (15) shows.

In the next iteration that basis function is selected which is min-
imizing the residual error energy. The residual error energy be-
comes minimum if the decrease of the residual error energy be-
comes maximum. Therefore the index u, v is selected maximizing

∆E
(ν) =

1

2(MN)2 � � ∆c � 2 �
m,n �  ϕu,v[m, n]ϕ �u,v[m, n]

+ Re � ∆c2 �
m,n �  (ϕu,v[m, n])2 � 
 (16)

However, the search area for DFT basis function is limited to the
gray area in Fig. 2 due to symmetry requirements (3), (4).

The algorithm is initialized by

g(0)[m, n] = 0. (17)

The algorithm terminates when the decrease of the residual er-
ror energy drops below a prespecified threshold ∆Emin.

3. IMPLEMENTATION IN FREQUENCY DOMAIN

All derivations are done so far by an approximation of a series
expansion in the spatial domain. However, the selection of a ba-
sis function by the evaluation of the sums (16) is computationally
complex. Hence, all computations are expressed in the frequency
domain in order to allow an efficient implementation.

The transform with respect to the special shape
�

can be ex-
pressed by a shifted window in the frequency domain

�
(m,n) �  ϕu,v[m, n]ϕ �k,l[m, n] = (18)

= �
(m,n) � � w[m, n]ϕu,v [m, n]ϕ �k,l[m, n] = W [k � u, l � v]
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Hence, we can express the computation of ∆c (11) in the fre-
quency domain with help of (3), (4)

∆cW [0, 0] + ∆c � W [2k, 2l] = 2MN � R[k, l]. (19)

Analogously we obtain a second conjugate complex equation. Solv-
ing the equations with respect to ∆c yields

∆c = � MN R[u,v]
W [0,0]

, u, v � �
2MN R[u,v]W [0,0] � R � [u,v]W [2u,2v]

W [0,0]2 � � W [2u,2v] � 2 , else
(20)

with � = � (0, 0), (0, N

2
), (M

2
, 0), (M

2
, N

2
) � . The case differen-

tiation is necessary due to the symmetry requirements (3), (4) and
the definition of g[m,n] according to (2).

The basis function with index u, v is selected maximizing

∆E
(ν)

� = � 2R[k,l]2

W [0,0]
, k, l � �

2 � R[k,l] � 2W [0,0] � Re � R[k,l]2W � [2k,2l] 	
W [0,0]2 � � W [2k,2l] � 2 , else

(21)
In iteration ν + 1 we obtain a residual error signal of

R(ν+1)[k, l] = R(ν)[k, l] �
1

2MN
(∆cW [k � u, l � v]+

∆c � W [k � (M � u), l � (N � v)]) (22)

The iteration terminates when the decrease of the residual error en-
ergy drops below a prespecified threshold. The parametric model
is then obtained by inverse DFT transform

g[m,n] = IDFTM,N � G[k, l] � . (23)

Finally, the missing block is cut out of g[m,n].
Since all equations can be expressed in the DFT domain, only

one transform into the DFT domain is required in the beginning
and one at the end.

The method described in this section is also applied in the field
of missing X-ray data interpolation in [7] and modeling the human
sense of hearing by signal processing in [8].

4. SIMULATION RESULTS

In general, periodic functions are suited for signal approximation
and extrapolation. The comparison of different periodic basis func-
tions (DCT, DFT) shows that DFT basis functions are better suited
for the extrapolation. The DCT contains only vertical and hori-
zontal basis images (see Fig. 3, left side) in contrary to the DFT
having also diagonal ones (real part is shown in Fig. 3, right side).

Simulated block losses of 8 � 8 and 16 � 16 pixels are inves-
tigated in order to test the error concealment algorithm. Table 1
shows the PSNR results evaluated at concealed blocks comparing

Fig. 3. 8 � 8 basis images. Left: DCT. Right: Real part of DFT.

different error concealment techniques. The images Lena, Baboon
and Peppers with a size of 512 � 512 pixels are investigated.

First of all we take a look at images concealed with the pro-
posed method. Due to the limited space only parts of images are
shown (full images can be seen on [9]). Fig. 4 shows on the left
side the Lena image with a 8 � 8 block loss and on the right the
concealed image. The missing block and a surrounding of known
pixels form a block of 12 � 12 pixels like in Fig. 1. The FFT trans-
forms this block in the DFT domain. A size of 64 � 64 is chosen in
order to apply the FFT algorithm. Additionally, with a larger FFT
size a better spectral resolution is obtained. The algorithm termi-
nates when either the termination threshold ∆Emin per pixel in
the known area or a maximum number of iterations Max it is ex-
ceeded. ∆Emin = 24 and Max it equals 4 iterations for the Lena
image resulting in 3.1 iterations on average per block. However, a
FFT size of 128 � 128 is applied in the case of a 16 � 16 block
loss. The terminations thresholds are chosen to ∆Emin = 6 and
Max it = 7. Fig. 5 shows on the right side the concealed Peppers
image from the left side. The frame of known pixels is 6 and the
average iteration length is 5.7. In the case of the damaged Baboon
image (Fig. 6, left) a frame of 12 pixels is chosen and on average
6.9 iterations are run. Fig. 6 shows the result on the right.

Obviously, the parameters frame size and number of iterations
depend on the image content. In principle it holds that the best so-
lution for the first iteration is achieved by a frame of one pixel. The
DC component is chosen in the first iteration and can be best ex-
trapolated from the direct surrounding corresponding to the color
of the missing block. However, in order to restore details, larger
frames are necessary as well as more iterations.

Generally, the image content of the missing block becomes more
uncorrelated to the image content of the surrounding as the dis-
tance from the missing block increases. A small frame is chosen
for the Lena image because the signals are partly highly uncorre-
lated. When the frame contains details which do not belong to the
content, the performance decreases. However, the frame can be
chosen larger for the Peppers image due to the clear structures and
monotone areas. A larger frame is anyway necessary for a detailed
reconstruction. For the image Baboon an even larger frame is cho-
sen since the fur shows a noise-like frequency behavior. In the case
of a larger frame and more iterations even the reconstruction of the
structure of the fur is possible (see Fig. 6, right side).

In the following the behavior of the algorithm is described in
comparison to the reference techniques. The introduced algorithm
is superior to the other techniques for the image Lena concealing
8 � 8 block losses with 26.0 dB except for [2] (see Table 1). How-
ever, [2] is impractical due to the excessive computational com-
plexity. For comparison Fig. 7 left shows the concealed image
according to [1] with a PSNR of 24.7 dB. Edges can not be recon-
structed and the concealed parts appear blurred. In contrary, the
proposed method can restore edges, especially also diagonal ones,
which is obvious from Fig.4, right side (e.g. hat).

Table 1 shows the convincing results of the method [2] except
for the image Baboon. The algorithm exploits the correlation be-
tween pixels in order to predict the missing pixel. If this assump-
tion is not fulfilled like for the fur in Fig. 7, right side, the algo-
rithm fails. This area cannot be predicted appearing in white spots.
Additionally, the performance applying method [2] decreases for
larger block losses from 20.6 dB to 18.7 dB in contrary to the in-
troduced method. For comparison Fig. 6 shows on the right side
the concealed image with the proposed method. The subjective
result is even more convincing than the PSNR performance.
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8 � 8 Block loss 16 � 16 Block loss
Lena Peppers Baboon Lena Peppers Baboon

Maximally smooth recovery [1] 24.7 dB 26.0 dB 20.0 dB 23.7 dB 24.2 dB 19.5 dB
POCS [3] 24.7 dB 25.7 dB 19.5 dB 22.3 dB 22.1 dB 18.9 dB
Spatial domain interpolation [4] 24.0 dB 26.1 dB 17.8 dB 21.2 dB 23.3 dB 16.4 dB
Reconstruction [5] 24.5 dB 26.3 dB 18.8 dB - - -
Sequential error-concealment [2] 28.1 dB 29.5 dB 20.6 dB 23.9 dB 26.9 dB 18.7 dB
Introduced algorithm 26.0 dB 26.4 dB 19.4 dB 22.8 dB 24.5 dB 19.1 dB

Table 1. Error concealment techniques in comparison.

Fig. 4. Left: Simulated 8 � 8 block loss. Right: Concealed image,
frame: 2, iterations: 3.1 per block.

Fig. 5. Left: Simulated 16 � 16 block loss. Right: Concealed
image, frame: 6, iterations: 5.7 per block.

5. CONCLUSION

We presented a method for spatial error concealment. The com-
putational complexity is in contrary to the reference methods con-
trolled by the image content, i.e. monotone areas require a few,
edges and noise-like areas more iterations. The frame of known
pixels depends also on the image content and controls the perfor-
mance. So far the frame size has to be preselected and therefore it
is desirable to have an adaptive frame constituting future work.
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