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ABSTRACT

In constrained total least squares algorithm (CTLS), the 
selection of a minimal algebraic set of linearly independent 
random variables to express the noise matrix C∆  is an 
important task. In this paper, A fast algorithm is provided 
using the possibly dependent random variables set. We 
showed that it can be viewed as a combination of
Mesarovic et al’ s CTLS method and RLS method when the 
noise is Gaussian. Our experimental study indicated that 
our algorithm has better visual and objective quality, while 
having a much lower computation cost. Moreover, our 
algorithm can also handle a more general noise model.

1. INTRODUCTION

The Total Least Squares (TLS) method has been widely 
used in image restoration. TLS solution is obtain by
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where
LR∈∆bxb ,,  represent the observed degraded 

image, the original image, and the additive noise,
respectively. A is the known PSF and A∆  is zero mean 
random noise matrix.

In a deconvolution problem, the matrix A is circulant, 
and the TLS method does not preserve the circulant 
structure of A. Let [ ]bMAC =  and [ ]? bMAC ∆=∆ . Under

this circumstance, one choice is to formulate the problem 
as
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      subject to C∆  having the same structure as C. (1)

In [1], Abatzoglou proposed a Constraint Total Least 
Squares (CTLS) method,
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The matrix Q is related to the known noise property. a 
way is provided to avoid computing it directly. The
procedure involves first finding a minimal algebraic set of 
linearly independent random variables from C∆  to form v.
The noise property of v is assumed known, i.e., its 

correlation matrix TT PPER == }{vv  is known. Then, 

performs a whitening of v to get vu 1-P= . Equation (2)
can then be written as
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which is a quadratic minimization problem subjected to a 
constraint. Finally, equation (3) is transformed into an 
unconstrained minimization problem as shown below (see 
theorem 1 in [1]),
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2. CTLS MTHOD USING DEPENDENT RANDOM 
VARIABLES SET

Let the CTLS restoration be modeled as
x? bb )( AA ∆+=+ , if let 
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In [5], we prove that this method can provide a good 
solution for CTLS problem.  Then equation (3)
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If 1W and 2W are circulant. In DCT transform domain, 

equation (27) is equivalent to [2]
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),( vuX  and B(u,v)  are the 2-D DFT of the corresponding 

spatial-domain images. A(u,v)  is the eigenvalues of the 
circulant matrix A, and can be replaced by the Optical 
Transfer Function (OTF) The detail analysis of ),( vuS r∆

and ),( vuS b∆  are given later.

To get a solution with good visual effect, smoothness 
constraint is needed. As in [1], we also use regularization 
to constrain our algorithm. The regularized version of  (7)
is
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3. . A FAST METHOD TO GET THE SOLUTION OF
CTLS EQUATION

We assume that the noise in PSF and b are Gaussian and 

white, with variance denoted by 2
PSFσ  and 2

b∆σ ,

respectively. The circular convolution is adopted at the 
boundary of the image in the degradation model. The PSF 
and the image ),( nmf  have 21 LL × and NM ×
components, respectively. According to Lemma 2, we 
obtain,
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and MMO ×  are MM ×  zero matrices, and ⎣ ⎦c  is used to 

denote the greatest integer not exceeding c.
In our experiment, we find that letting 1WS r ≈∆  is a 

good choice
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Then, equation (8) can be separated into two parts,
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Using our dependent set for v, we found that
Mesarovic et al’ s method can be regarded as an
approximation of equation (6), i.e., if we replace all the 

zeros along the diagonal direction with 2
PSFσ , then 1W

becomes a circulant matrix,
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and we obtain the solution of Mesarovic et al’ s method as 
shown below,
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However, this approximation is far from being the best one, 
since the total power of the noise spectrum ),(' vuS r∆ is

several times greater than that before approximation when 
the size of the PSF is much less than that of the image. 
Thus, the noise power is amplified several times in the 
solution. We can prove that equation (9) is a much better 
approximation of ),( vuS r∆  in Frobenius norm.

Proof:  We need to prove that
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In image processing, the PSF size is often much less than 

the size of the image, that is 0
2

1 21 >−
MN
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The equation of (10) differs from ((13) in that the former 

uses 02 =PSFσ for high frequencies while the latter

estimates the entire DFT coefficients. When the variance 

of the noise in the PSF, that is 2
PSF

σ , becomes zero, the 

regularized CTLS estimate degenerates to the RLS estimate 
[4]. Our algorithm uses the CTLS formulation only for the 
low frequencies. For the high frequencies, our algorithm 
uses the RLS estimate. From this viewpoint, our algorithm 
can be seen as a combination of the TLS and RLS
methods.

In [1], the Davidon-Fletcher-Powell optimization
technique is used to find each of the optimal value 

),( vuX  for every },{ vu . In our algorithm, the

optimization only needs to be applied to the low frequency 
part, thus resulting in great computational saving.

4. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to verify 
our algorithm. Due to the similarity of our algorithm with 
that of [2] [3], their choice of the λ parameter and can be 
modified to fit our algorithm. The perturbation analysis of 
the CTLS algorithm in [2] is applicable for our algorithm.

For comparison, we use the experimental data of [2] in 
our experiments. The 256256×  “LENA” image is used as 

the source image. The Gaussia n PSF used to blur the 

source image has a variance of 25.62 =σ , and the region 
of support is 2929 × , The PSF was corrupted with 

additive white Gaussian noise of variance 72 108 −
∆ ⋅=Aσ .

Gaussian noise with 0.12 =∆bσ  was used for b? .

1000 Monte Carlo simulations were performed with 
independent realizations of the stochastic blur and the 
noise. As a quantitative measure of performance, the 
improvement in signal-to-noise-ratio (ISNR) was used [2],
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where f, g, and f̂ are the original, degraded, and estimated 

images, respectively.
The quantitative results are given in Table 1 and the 

visual results are given in Fig.1.  From the experiments, we 
observe that our algorithm has better visual and objective 
quality.
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Table 1     ISNR comparison for four methods

5. CONCLUSION

In this paper, we use the constrained total least-square
(CTLS) method to solve the image restoration problem. In 
conventional CTLS algorithm, the selection of a minimal 
algebraic set of linearly independent random variables to 
express the noise matrix C∆  is an important requirement. 
This makes the CTLS equation very sensitive to the size of 
the PSF, and limits the application of the CTLS method. In 
this paper, a possibly dependent set could also be used 
without affecting the final result. We showed that, by 
using a specially selected set and the property of DFT, our 
CTLS equation can be decoupled into a set of much 
simpler equations, which makes the computation
substantially more efficient. When the noise is Gaussian, 
our algorithm can be viewed as a combination of
Mesarovic et al’ s method and the RLS method. Moreover, 
our algorithm can also handle a more general noise model. 
Simulation experiments indicated that our algorithm has 
better visual and objective quality, but with much lower 
computation.
    Finally, we like to remark that the sparseness structure is 
not only applicable for the situation where the PSF size is 

smaller than that of the image, but also for the situation 
where part of the PSF values are known or fixed.
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a) b) c) d)
Fig. 1 Objective elevation of algorithm a) Origin image; b) Degraded image; c) Restored image with Mesarovic algorithm; 
e) Restored image with our method

ISNR (db)
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