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ABSTRACT

Translation Invariant (TT) image denoising outperforms orthog-
onal wavelet thresholding by averaging a collection of denoised
estimates from different orthogonal bases. This paper proposes a
new perspective of TI processing as an average of a collection of
cyclic-basis frame reconstructions, each a stationary signal esti-
mate, contrasting with the nonstationary estimates of orthogonal
wavelet thresholding. This viewpoint clarifies that certain char-
acteristics of TI (i.e. reduced edge contour artifacts) are inherited
from each cyclic-basis reconstruction, rather than from the process
of averaging. We relate performance advantages of TI in smooth
areas of images to statistical relationships of the cyclic-basis re-
constructions. In edge regions, the quality of cyclic-basis recon-
structions vary significantly with pixel position relative to the edge
contour. These differences couple with convexity arguments to
explain large performance gains of TI in edge regions. They also
suggest an improved approach to frame reconstruction, based on
estimating relative location information, and identifying the best
cyclic-basis reconstruction for the estimated pixel location.

1. INTRODUCTION

Wavelet thresholding [1] for image denoising has been researched
extensively because of its effectiveness and simplicity. This ap-
proach expands the image in a wavelet basis, keeps approximation
coefficients unchanged, and compares each detail coefficient to a
threshold. If it is below the threshold, the coefficient is set to zero;
if it is above the threshold, it is kept unchanged or modified by
some amount. Thresholding in an orthogonal wavelet basis has
been observed to produce Gibbs-like visual artifacts around edges
[2]. Translation invariant (TI) denoising has been proposed to mit-
igate these artifacts. TI can be considered as the average of the re-
sults of thresholding in different orthogonal bases (differing only
in translation). The denoising performances in all these orthog-
onal bases are approximately the same. By averaging, TI gets a
significant performance gain over each of these bases (Fig.1(a)).
In [3, 4], the relationship between wavelet thresholding in an
orthogonal basis and TI is explained in terms of the effective reg-
ularity of the denoising kernels, suggesting that TI can be viewed
as contributing some extra smoothing to the single-basis denois-
ing algorithm. While this is indeed correct, we observe that more
fundamental differences between TI and basic wavelet-based de-
noising algorithms can be identified, relating to how they respect
the stationarity of the desired signals. The stationarity property of
the assumed signal model implies that the statistical relationship
between each pixel and its neighborhood of pixels is invariant to
translation. It can be easily recognized, however, that the same
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translation invariance is not found in the way each pixel is recon-
structed by the single-basis wavelet-denoising algorithm. For basic
wavelet denoising, the treatment of each pixel differs depending on
where the pixel is located relative to the arbitrary downsampling
grid of the wavelet decomposition. For smooth, stationary Gaus-
sian processes, we describe how this lack of translation invariance
creates relationships between the approximation error and residual
noise variance of the collection of single-basis wavelet denoised
images that improve the quality of the averaged TI denoised im-
age.

Building from these insights, we define a new collection of
translation-invariant frame-based cyclic-basis reconstructions, and
show that TI denoising can also be viewed as the average of cyclic-
basis reconstructions, each reflecting the stationarity of the under-
lying signal model. Unlike the collection of single-basis recon-
structions, which all have the same average noise performance, the
quality of the cyclic-basis reconstructions differ significantly, and
we investigate the cause and consequences of these differences for
smooth Gaussian processes.

Although the analysis of TI denoising and cyclic-basis recon-
struction is most tractable for smooth, stationary Gaussian pro-
cesses, the most significant gains of TI denoising, and the most
significant differences among cyclic-basis reconstructions are due
to reconstruction of edge regions in images. Around edges, pixel
statistics are highly dependent on the pixel location relative to the
edge contour. (L.e. given edge contour information, the signal is
non-stationary.) Thus, we show that the stationary cyclic-basis re-
constructions vary significantly depending on pixel position. We
show that these large variations in errors of cyclic-basis recon-
structions, coupled with the convexity of the mean-squared-error
performance measure, explain the substantial processing gains re-
alized by TI. We also recognize that certain characteristics of TI
(i.e. removal of contour artifacts) that have been viewed as re-
sults of averaging actually reflect characteristics of each and ev-
ery cyclic-basis reconstruction, before any averaging. Finally, our
understanding of TI performance also points to an improved ap-
proach to wavelet denoising based on estimating relative location
information in the neighborhood of edges. When location informa-
tion can be reliably estimated, the best cyclic-basis reconstruction
given pixel location offers significant gain over TI denoising.

2. CYCLIC-BASIS RECONSTRUCTION

2.1. Orthogonal and translation invariant denosing

In 1D case, assume f is a discrete signal with N = 2™ samples.
Let W and W, ! denote the orthogonal wavelet transform with
translation k£ (k = 0,1,--- , M — 1), corresponding to periodi-
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cally translating f by k before applying the ordinary DWT, and
translating by —k after applying the ordinary inverse DWT. For an
L-level decomposition, M = 2. For each k, W defines an or-
thogonal basis. In the 2D case, f isa N by N signal and there are
M? orthogonal bases, with k = m % M + n. We will sometimes
use (m, n) to denote basis k in 2D case. Then the estimation in
the k%" basis is
fe=W(Dr(We(9)), (9= +n),

where n is i.i.d. Gaussian noise, and D7 (z) is soft thresholding.
Soft thresholding keeps all approximation coefficients unchanged,
and replaces detail coefficient y with sgn(y)(|ly| — T)+ . Given
M (or M? in 2d) such estimates, the T estimate is formed:

| Mol
fTI:M kz_ofk

For stationary signals, all the estimates fk should have equal qual-
ity. For natural images, it is observed [2, 5] that the mean square
errors of fi (E||fx — f||?) are approximately equal, and MSE of
frr (E||frr — f])?)is about 20 - 25% lower than that of any fj, .

2.2. Cyclic-basis Reconstruction

Since natural images are stationary, an ideal signal estimate should
preserve this property. Because orthogonal wavelet transforms are
not translation invariant, orthogonal wavelet shrinkage produces
non-stationary estimates. If the tight frame formed by taking to-
gether basis vectors from all the M (M 2 in 2d) bases is considered,
then all fk and fT 1 can be considered different frame reconstruc-
tions from the same frame. Assuming that the denoising opera-
tion on the coefficients is translation invariant (true for [2, 5]), the
whole denoising process preserves stationarity if and only if the
reconstruction is also translation invariant.

This paper proposes a new translation-invariant frame recon-
struction, called cyclic-basis reconstruction. In the 2D case, define
cyclic-basis reconstruction ffmyn), O <m,n < M —1)tobe the
reconstruction that assigns at pixel (z.5) the estimate from orthog-
onal basis ([¢ + m]a, [j + m]n), where [z]ar is the modulo M
operation. Le. f(, .)(4,7) = f(livmlas.lj+m]n) (5 7). The def-
inition in 1D is similar. This reconstruction has the form of pro-
cessing the frame coefficients on each scale with a linear filter as-
sociated with that scale and then adding the results together. Thus,
cyclic-basis reconstruction is translation invariant and all f(cmm

are stationary. It is worth noting that, just as each f,S is a periodic
assignment of pixels from the collection of fk, 0<k<M-1,
we can recognize each fk to be a periodic assignment of pixels
from the collection of f,ﬁ, 0 < k < M — 1. Thus, the nonsta-
tionarity of each estimate fk can be recognized as reflecting the
statistical variation among the collection of stationary estimates
f,ﬁ, 0 < kK < M — 1. Moreover, since TI can be considered
as the average of cyclic-basis reconstructions, it inherits many of
the properties of these reconstructions. Studying thresholding in
cyclic-basis reconstructions sheds new light on the performance of
TIL, as well as suggests directions to improve performance.

For natural images, the performances of cyclic bases have very
large difference, while those of orthogonal bases are about the
same (Fig. 1(a)).
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Fig. 1. Denoising performance of TI, orthogonal and cyclic bases
for sigals with additive white Gaussian noise N (0, 400), threshold
T'=60 and 3-level symlet-8 wavelet decomposition.

3. ANALYSIS OF SMOOTH AREA

3.1. Smooth signal model

In smooth areas of an image, detail wavelet coefficients are small
compared to the noise, and do not survive the thresholding opera-
tion (in [5] very large thresholds are used for smooth areas). Then
fk is the linear projection of g onto the wavelet approximation sub-
space V¥ ( fe = Pu (g)) of orthogonal basis k. And the MSE in
basis k is

Ellfe — fII? = EBlP:(f+n)— fI
= E||P(f) - fII” + B||P:(n)]|?

The two terms on the last line, approximation error and residual
noise, have the same value for all orthogonal bases. The approxi-
mation error Pry(f) and residual noise Prr(n) of TI are the av-
erage of those of all the orthogonal bases. Since the denoising
operation on frame coefficients is linear (in smooth areas), and
both cyclic-basis reconstruction and TI are time-invariant, both re-
constructions can be viewed representing the output of equivalent
denoising filter, where the TI filter is recognized as the average of
the collection of equivalent cyclic-basis reconstruction filters.

We model the signal in smooth areas as the sum of two com-
ponents: a polynomial function with order less than D, and a sta-
tionary random Gaussian process. For natural images the poly-
nomial component often dominates, and the Gaussian component
may come from processing noise. Assuming D is less than or
equal to the number of the vanishing moments of the wavelet used,
then approximation error for the polynomial component in any or-
thogonal wavelet bases is zero. Correspondingly, it contributes
zero error to the approximation error of TI. Thus only the approx-
imation error of the second component need to be considered.

3.2. Residual noise and approximation error

The residual noise Px(n) is a cyclo-stationary Gaussian process.
The cycle is 2% for 1D signal, and (2F, 2F) for 2D signal. And the
residual noises in cyclic-basis reconstruction and TI are stationary
Gaussian processes. It can be shown that, for any L

E|| P (n)||* N¥on /K"

EWMMW/Vme

E||Pr:(n)||*

where o2 is the noise variance, K is 2 for 1D signal and 4 for
2D signal, and ®(x) is the autocorrelation function of the wavelet
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Fig. 2. Artifacts in orthogonal basis (a) and Edge Geomety (b)

scaling function. The energy of ®(z) is smaller than or equal to
one. For 1D Haar wavelet it is 2/3, and for 1D and 2D Daubechies’
symlet wavelet with eight vanishing moments (used in [5] for im-
age denoising) they are 0.91 and 0.83 respectively. For each cyclic
basis, the residual noise is stationary. The residual noise variance
(Fig. 1(b)) is determined by its frame reconstruction filter.

For the signal component comes from a stationary random
Gaussian process model, approximation error can be analyzed in
the same way as the residual noise. It can be shown

E|lf — Pu(f)|?

/ 9L P (2 F)(1 — Pal(f)) df
Bllf - PP = / 9 LR, (27 E F)(1 — Pa(f)* df

where Ps(f) and Pg(f) are the power spectrum of the signal and
wavelet scaling function respectively. Pas(f) is less than or equal
to 1, and itis 1 at f = 0. So TI has smaller approximation er-
ror than orthogonal bases (TI recovers some of the signal lost in
thresholding). If the wavelet has D vanishing moments, then the
1%t to (2D —1)*" derivatives of Py (f) at f = 0 vanish. This result
is consistent with [3, 4]. For each cyclic basis, the error spectrum
can be characterized by its frame reconstruction filter.

The projection of stationary signal and noise onto subspaces
{VF,0 < k < M} produces a collection of nonstationary pro-
cesses. The “angle” between these subspaces can be measured
by the correlation matrix of the collection of projected estimates at
any pixel. Though space does not permit a full treatment, larger an-
gles between subspaces increase the independence of the residual
noise seen by each estimate, and thus increases the effectiveness
of TI averaging in reducing noise variance. However, larger an-
gles between subspaces also increase the nonstationarity of the es-
timate, thus distancing the estimate from the true stationary signal,
and increasing approximation error, both for each fk and frr. The
”angle” can be controlled by design of the wavelet, thus providing
a trade-off between noise reduction and approximation error.

4. ANALYSIS OF EDGE AREA

4.1. Artifacts in orthogonal wavelet thresholding

Orthogonal wavelet thresholding produces pseudo-Gibbs phenom-
ena around edges. In images, we recognize two kinds of artifacts:
(i) overshoots and undershoots in the direction vertical to the edge
contour (section 4.3), and (ii) discontinuities along the direction of

(b) cyclic-basis reconstruction

(a) orthogonal basis

Fig. 3. Estimation Bias for Lena image

the edge contour (section 4.2), as shown in Fig. 2(a). Fig. 2(b) il-
lustrates the edge geometry producing the second type of artifact.
Suppose an edge runs from A to B, with pixel C' and D having
the same relative location relative to the edge (and the same gray
level). In a given orthogonal basis (m,n), C' and D are repre-
sented by a common collection of wavelet coefficients, but differ-
ent weights are applied to those coefficients to reconstruct pixels
C and D. Thresholding these coefficients thus has different effects
on C and D. Treating pixels differently though they have the same
location relative to the edge creates periodic processing structures,
which we recognize as the second type of artifact discussed above.

To eliminate this type of artifact, C' and D should be com-
puted with the same reconstruction weights applied to the same
coefficient values, and this should be true for any pixels C' and
D equidistant from any arbitrary edge orientation. This can only
hold if C' and D have access to a translation-invariant collection of
coefficients, and are computed with a translation-invariant set of
weights. Since these conditions are met for each cyclic-basis re-
construction f(cm,n), all of these reconstructions are images with-
out these types of artifacts. Naturally, TI, the average of all these
images, also lacks these artifacts.

Figure 3 shows how the cyclic-basis reconstruction reduces
the periodic artifacts along edges in the Lena image compared with
the orthogonal wavelet reconstruction. The pictures show the es-
timation bias of the two reconstructions, where bias is defined as
E.{[f — f]If}. for each of the estimators f} and f;. We note that
the estimation bias is the dominant source of error energy around
edges when the threshold is large compared with the noise standard
deviation. We also note that stationarity of f,ﬁ only ensures that the
periodic artifacts along edges are reduced, not that f,ﬁ is without
error. In fact, since the collection of estimates { f,i} is formed by
a permutation of the pixels in { fk}, the total error in the two sets
must be equal. The next section discusses how the cyclic-basis re-
constructions provide a clearer organization of that error, and give
us a slightly better handle on characterizing the error.

4.2. Convexity and the gain of TI

The processing that produces each fx estimate is a shifted version
of the processing that results in fkfl. Assuming an underlying sta-
tionary signal and noise model, we can conclude that the denoising
performance of all fk are statistically indistinguishable. In con-
trast, each f,ﬁ represents quite different processing than any other
one, and thus we have no reason to expect that their denoising per-
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Fig. 4. Performance of soft thresholding (with threshold 7=60 and
3-level wavelet decomposition) in orthogonal and cyclic bases for
Lena image with additive white Gaussian noise N (0, 400)

formance would be the same. In fact, Figure 4 both confirms the
similarity in quality of all fk, and shows significant differences
in the error energy of the f,ﬁ Before considering the possibility
of exploiting these differences by estimating the minimum-error
f,ﬁ(z’, 7), we discuss here how these differences, coupled with the
convexity of the MSE metric, explain the large gains achieved by
TI in edge regions.

The mean square error (E||z||?) metric is a convex function,
and according to the definition of fT I

M—-1
A 1 A
Ellfrs = fIP < 57 2 Ellfe — fIP
k=0

E|lfr — I

For each pixel (i, 7), the difference between the two sides of the
inequality is the sample variance of the collection of M estimates,
{fe(i,5)}. Thus, the gain of TI in edge areas depends on the
differences in error energies of the estimates { f,ﬁ }, which is il-
lustrated in figure 5(a). Figure 5(a) depicts the range of absolute
estimation biases for a collection of 8 cyclic-basis reconstructions
(1D example with L = 3), and compares it to the absolute es-
timation bias of TI. The two curves defining the range of biases
represent the pixel-wise minimum and maximum biases over all
the cyclic-basis reconstructions, as functions of the location of the
pixel relative to the center of the edge. Note that most absolute
bias is contributed by pixels approximately 1-3 samples from edge
centers (actual distances depends on sharpness of edges). Across
all distances, we see significant range of variation between min-
imum and maximum biases, explaining the large gains of TI in
edge regions.

4.3. Best cyclic basis selection

Both figures 4 and 5(a) point towards the possibility of more ag-
gressively combining the set of estimates { f,? } to compute a bet-
ter estimate than fT 1. Specifically, we see in figure 4(b) that
two cyclic-basis reconstructions (8 and 9) appear to have signif-
icantly better performance than fT 1. We see in figure 5(a) that the
minimum-bias estimator for each pixel location has significantly
lower bias than fT I.

As attractive as figure 5(a) appears, we recognize that the fea-
sibility of every achieving the minimum-bias estimator is limited
by the structure involved in selecting the best f from the set { f,g}
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Fig. 5. Best cyclic-basis reconstruction for a Gaussian filtered
ideal edge with symlet-8 wavelet.

E.g. if the k defining the lower curve in figure 5 is randomly se-
lected for each pixel position from the range 0 < k < M, it would
be unreasonable to expect any algorithm to find the best k. Fig-
ure 5(b) suggests that finding the best k may be quite feasible, at
least for the most important pixel positions. The solid line in 5(b)
corresponds to the minimum-bias curve of 5(a), and shows that
this minimum-bias curve coincides with the bias curves of only
two cyclic-basis reconstructions for most pixel positions with the
highest biases. It is worth noting that the two ”good” cyclic-basis
reconstructions in this figure are the 1D corresponding reconstruc-
tions to the two cyclic-basis reconstructions (8 and 9) of figure
4(b).

The choice of the best basis for a pixel around an edge de-
pends mostly on the location and slope of the edge. If this informa-
tion is available, the best basis for each pixel with very small bias
(cyclic bases 1 or 2 for symlet-8) can be found. The performance
of this adaptive best basis promises to be much better than any
of the cyclic-basis reconstructions shown in Fig.4(b). A practical
algorithm for reliably estimating best cyclic-basis reconstruction
remains a subject of ongoing research.
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