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ABSTRACT

By extensive analysis with several video sequences, we observed
that the statistical distribution of the DCT coefficients in typical
video coding applications is closer to a Cauchy distribution than to
a Laplacian distribution. We developed the rate and the distortion
expressions as a function of the video coder quantization param-
eter based on this observation. Experiments with an H.264 codec
demonstrate that the Cauchy distribution based expressions pro-
vide better estimates for the actual rate and distortion than those
that are based on the Laplacian distribution.

1. INTRODUCTION

Most image and video coding standards use a block based two-
dimensional discrete cosine transform (DCT) or an approxima-
tion to it as part of the coding algorithm [1, 2, 3]. The knowl-
edge of the statistical behavior of the DCT coefficients is impor-
tant in the design of such encoder algorithms as rate control and
macroblock mode selection. Especially, the AC portion of the
DCT coefficients (AC coefficients) is of great interest. Several
studies on the statistical distribution of the AC coefficients have
been proposed, in which the AC coefficients were conjectured to
have Gaussian [4, 5], Laplacian [6, 7], or more complex distribu-
tions [8, 9]. Among these, the Laplacian distribution is probably
the most popular, and used in practice. This is mainly due to the
simplicity of the Laplacian probability density function (pdf) that
makes it easy to derive mathematical formulations for the video
coding algorithms.

However, the actual distribution of the AC coefficients in im-
age and video applications differs from the Laplacian distribution
in most cases. As a result, rate and distortion models based on this
distribution sometimes fail to estimate the actual rate-distortion-
coding parameter relations accurately. A more accurate, and sim-
ple approximation to the actual AC coefficient distribution would
be very useful in image and video coding applications.

We claim that for most video sources, the actual AC coefficient
distribution is closer to a Cauchy distribution than a Laplacian dis-
tribution. Using the Cauchy pdf, we can formulate the relations
between the quantization parameter Q of a video coder and the
output bit rate and the distortion caused by the quantization more
accurately. In this paper, we show that the actual AC coefficient
distribution is better approximated by a Cauchy distribution than
a Laplacian distribution, by comparing the actual rate and distor-
tion functions with the rate and distortion approximations obtained
using the two densities.

2. ANALYSIS OF DCT COEFFICIENTS OF TYPICAL
VIDEO SOURCES

The performance of a video coder in terms of its output bit rate,
and the encoded video quality varies with the nature of the video
source. Traditional video coders use block-based DCTs for com-
pression1. For intra coding, the DCT is applied to the image itself;
for non-intra coding, a residual image is obtained by performing a
prediction, and the DCT is applied to this residual. In both cases,
knowledge of the DCT coefficients distribution is valuable for op-
timizing the video coder. Fig. 1 shows a typical plot of the his-
togram of the AC coefficients for an 8 × 8 block based DCT of a
video frame from the AKIYO sequence.
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Fig. 1. Distribution of the AC DCT coefficients - for a video frame
from the Akiyo Sequence (QCIF format).

As discussed in Section 1, the DCT coefficient distribution is
traditionally approximated by a Laplacian pdf with parameter λ:

p (x) =
λ

2
exp {−λ |x|} , x ∈ R. (1)

The Laplacian pdf has an exponential form, leading to the property
that the tail of the density decays very fast. In most cases, the
actual DCT coefficient distribution has a considerable tail. A zero-
mean Cauchy distribution with parameter µ, having the pdf

p (x) =
1

π

µ

µ2 + x2
, x ∈ R, (2)

1The H.264 coder uses an integer transform that is a close approxima-
tion to the DCT.
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exhibits similar behavior as the actual AC distribution, for which
the tail of the density decays slow. The parameter µ depends on
the picture content and can be estimated using the histogram of
the transform coefficients. Fig. 2 illustrates the accuracy of the fit
for both the Cauchy and the Laplacian pdf’s for the DCT coef-
ficient distribution of a selected video frame from the TEMPETE

sequence. In the figure, the first plot shows the actual distribution
of the coefficients for the intra coding case; the second plot shows
the actual distribution for the non-intra coding case. In both cases,
the Cauchy pdf is a better fit to the actual distribution than the
Laplacian pdf. Clearly, we need more experiments to support our
claim. However, rather than comparing the histograms as we did
in Fig. 2, we compare the actual rate and distortion functions with
the estimates based on the Cauchy and the Laplacian distributions.
That is, since the rate and the distortion functions that are derived
from these pdfs are used in practice, we consider them as the basis
for comparison.
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Fig. 2. Comparison of Laplacian vs Cauchy histograms - selected
intra and non-intra frames from TEMPETE sequence

2.1. Cauchy-Based Rate Estimation

A more accurate estimate of the AC distribution will lead to more
accurate estimation of the rate. Assume that the DCT coefficients
are uniformly quantized with a quantization level Q. Let P (iQ)
be the probability that a coefficient is quantized to iQ. Then the
entropy of the quantized DCT coefficients can be computed as

H (Q) = −
∞∑

i=−∞
P (iQ) log2 [P (iQ)], (3)

where

P (iQ) =

(i+ 1
2 )Q∫

(i− 1
2 )Q

fX (x) dx.

For a Laplacian distribution, we have

P (iQ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2
e−iλQ

(
e

λQ
2 − e−

λQ
2

)
if i > 0

1 − e−
λQ
2 if i = 0

1
2
eiλQ

(
e

λQ
2 − e−

λQ
2

)
if i < 0

.

Therefore, the entropy as a function of Q for a Laplacian dis-
tribution is

H (Q) = −
(
1 − e−

λQ
2

)
log2

(
1 − e−

λQ
2

)
−

2e−
λQ
2

[
log2

(
e

λQ
2 −e

− λQ
2

2

)
+ λQ

(1−e−λQ) ln 2

]
.

For a Cauchy distribution,

P (iQ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
π

tan−1

(
µQ

µ2+(i2−1/4)Q2

)
if i > 0

2
π

tan−1
(

Q
2µ

)
if i = 0

1
π

tan−1

(
µQ

µ2+(i2−1/4)Q2

)
if i < 0

.

Therefore, the entropy function as a function of Q for a Cauchy
distribution is

H (Q) = − 2
π

tan−1
(

Q
2µ

)
log2

(
2
π

tan−1
(

Q
2µ

))
−

2
π

∞∑
i=1

tan−1

⎡
⎣ 1

µ
Q

+
(4i2−1)Q

4µ

⎤
⎦ log2 tan−1

⎡
⎣ 1

µ
Q

+
(4i2−1)Q

4µ

⎤
⎦

(4)
These entropy functions based on the Laplacian and the Cauchy
pdfs are computable, provided that the density parameters λ and µ
are known. The Laplacian parameter λ can be computed using its
relation to the variance of the AC coefficients (σ2) as λ =

√
2/σ.

Similarly, the Cauchy parameter µ can be computed using the his-
togram of the AC coefficients. Although the entropy of a quantized
Cauchy source can be computed using Eq. (4), it would be prefer-
able to use a simpler formula. After analyzing Eq. (4), one can
find that there exists a very simple, yet accurate approximation to
it, which is

R (Q) ≈ aQ−α, (5)

where a, α > 0 are parameters that depend on µ 2. To assess the
accuracy of this approximation, we plot the entropy function and
its approximation for different values of µ. As shown in Fig. 3, the
approximation is accurate, especially for µ ≤ 1.
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Fig. 3. Theoretical versus approximated entropy functions for five
different values of the Cauchy distribution parameter µ.

2There is no analytical expression that relates a and α to µ.
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2.2. Rate Experiments

To show the effectiveness of the rate model given in Eq. (5), we
conducted several experiments with a number of video sequences
each in QCIF-format. We encoded an intra frame followed by a
non-intra frame for each sequence at several quantization levels
to obtain the actual rate as a function of the quantization level Q
for both intra and non-intra coding. We used the H.264 reference
software, version JM-6.0 [10] for our experiments3. The rate esti-
mates are computed using the Laplacian entropy function and the
Cauchy-based approximation given in Eq. (5). In Figs 4 and 5, the
Laplacian-based rate estimates and Cauchy-based rate estimates
are compared with the actual rate as a function of Q for both intra
and non-intra coding.
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Fig. 4. The actual rate vs. Laplacian and Cauchy based rate esti-
mates for (a) an intra frame, and (b) a non-intra frame from FORE-
MAN sequence.

Table 1 summarizes the rate estimation accuracy based on both
distributions with several frames selected from a wide range of
video sequences. The Cauchy-based rate estimation is signifi-
cantly better than the Laplacian-based rate estimation for these

3The entropy coder (CABAC) used in the H.264 video coder [3] is re-
ported to be more advanced than the entropy coders used in the other video
coders, so we expect its performance to be closer to the theoretical limits.
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Fig. 5. The actual rate vs. Laplacian and Cauchy based rate esti-
mates for (a) an intra frame, and (b) a non-intra frame from IRENE

sequence.

video sequences. The Cauchy estimate matches the coder perfor-
mance very accurately, especially for intra coding.

2.3. Cauchy-Based Distortion Estimation

The distortion due to quantization can also be estimated accurately
based on the Cauchy pdf assumption. Assume that we have a uni-
form quantizer with step size Q. The distortion caused by quanti-
zation is given by

D (Q) =
∞∑

i=−∞

(i+ 1
2 )Q∫

(i− 1
2 )Q

|x − iQ|2 fX (x) dx.

It can be shown that this infinite sum is convergent and bounded
from above by Q2/4. For a Cauchy source, this expression be-
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Rate estimation error %
Intra coding Non-intra coding

Image Laplace Cauchy Laplace Cauchy

CARPHONE 0.140 0.023 0.360 0.115
CLAIRE 0.125 0.015 0.283 0.054

FOREMAN 0.130 0.017 0.410 0.287
MOB. & CAL. 0.062 0.047 0.282 0.106

IRENE 0.137 0.022 0.404 0.188
COASTGUARD 0.102 0.055 0.203 0.116

NEWS 0.080 0.036 0.133 0.078
TEMPETE 0.078 0.055 0.214 0.116

Table 1. Comparison of the rate estimation performance of the
Laplacian-based rate model and the Cauchy-based rate model
given in Eq. (5).

comes

D (Q) = 2

M∑
i=1

µQ

π
− iµQ

π
ln

(
µ2 +

(
i + 1

2

)2
Q2

µ2 +
(
i − 1

2

)2
Q2

)

−2

M∑
i=1

µ2 − i2Q2

π
tan−1

(
µQ

µ2 +
(
i2 − 1

4

)
Q2

)

+

[
µQ

π
− 2µ2

π
tan−1

(
Q

2µ

)]
.

This equation suggests that the distortion depends on µ as well
as Q. Although this equation is highly complex, for practical val-
ues of Q, it can be approximated simply as

D(Q) ≈ bQβ , (6)

where b, β > 0 are parameters that depend on µ4. Fig. 6 shows
the actual distortion functions for intra and non-intra coding cases
for the MOBILE AND CALENDAR sequence and the estimated dis-
tortion functions using the Laplacian pdf and the Cauchy-based
approximate rate model of Eq. (6).

3. SUMMARY AND CONCLUSION

In this paper, we claim that the AC coefficient distribution is bet-
ter approximated by a Cauchy density than by a Laplacian density.
The rate and distortion of a video coder as a function of its quanti-
zation parameter is derived under the Cauchy-distribution assump-
tion. The accuracy of the Cauchy-based rate and distortion func-
tions are examined against the traditional Laplacian-based func-
tions using an H.264 coder. The experiments have indicated that
Cauchy-based functions are more accurate than the Laplacian based
functions in most cases. We expect that these new rate and distor-
tion functions will give rise to better video encoding algorithms.
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