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ABSTRACT 

In the context of very low bit-rate video coding, pattern 

representations of a moving region (MR) in block-based motion 

estimation and compensation has become increasingly attractive. 

Generally, all existing pattern-matching algorithms apply a 

similarity metric involving elementary operations, to compute 

the mismatch between a MR and a particular fixed pattern in 

order to select the best-matching pattern from a fixed-size 

codebook of predefined patterns. In this paper, an efficient 

similarity metric together a new generic computation strategy is 

presented by considering only the mismatch areas of MRs. It is 

theoretically proven that for a specific MR in a macroblock, the 

new similarity metric selects exactly the same pattern as existing 

metrics, while the resulting computational coding efficiency is 

improved by between 21% and 58% compared with the H.263 

low bit-rate coding standard.  

1. INTRODUCTION

Reducing the transmission bit-rate while concomitantly retaining 

image quality continues to be a challenge for efficient very low 

bit-rate video compression standards, such as H.263 [4]. These 

standards are however unable to encode moving objects within a 

16×16 pixel macroblock (MB) during motion estimation (ME), 

resulting in all 256 residual error values being transmitted for 

motion compensation (MC) regardless of whether there are 

moving objects. One solution is to sub-divide the MB and apply 

ME and MC to each sub-block. With a sufficient number of 

blocks, the shape of a moving object can be accurately 

represented, but this has a high processing expenditure [1].  

The MPEG-4 [3] video standard first introduced the 

concept of content-based coding, by dividing video frames into 

separate segments comprising a background and one or more 

moving objects. The pattern-based video coding algorithms in 

[6]–[8] and [12] exploited the idea of partitioning the MBs, via a 

simplified segmentation process that avoided handling the exact 

shape of the moving objects, so popular MB-based ME 

techniques could be applied. If Ck(x,y) and Rk(x,y) denote the kth

MB of the current and reference frames, each of size 

linespixels HW × , respectively of a video sequence, where 

15,0 ≤≤ yx and 16160 HWk ×<≤ . The moving region 

),( yxM k  of the kth MB in the current frame is obtained as 

follows:

|)),(),((|),( ByxRByxCTyxM kkk •−•=            (1) 

where B is a 3×3 unit matrix for the morphological closing 

operation • [5], which is applied to reduce noise, and the 

thresholding function T(v) = 1 if v > 2 and 0 otherwise. As ‘1’ 

indicates a moving region (MR) and ‘0’ the static region of that 

MB, the total number of ‘1’s is used as a MB classification 

criterion. 
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Figure 1: The pattern codebook of 32 regular shaped, 64-pixel 

patterns, defined in 16×16 blocks, where the white region 

represents 1 (motion) and black region represents 0 (no motion). 

Let Q be the total number of ’s in the matrix Q. Pattern 

matching algorithms have traditionally classified each MB into 

three mutually exclusive categories:1) Static MB (SMB): MBs 

containing little or no motion; 2) Active MB (AMB): MBs 

containing moving object(s) with little static background and 

3) Active-Region MB (RMB): MBs containing both static 

background and part(s) of moving object(s) such that the MR of 

the block can be considered similar enough to a pattern from a 

pattern codebook (PC) of 64-pixel patterns (e.g., P1–P32 in 

Figure 1). Any MB that cannot be directly classified as a SMB 

( 80
1

<≤ M ) or AMB (
1

128 M< ) [9], is first identified as a 

candidate RMB (CRMB) and a similarity metric applied to 

classify it as either a RMB or AMB. The first two MB types are 

defined in the H.263 standard [4] and treated in exactly the same 

way, while for the RMB classification, ME and MC is performed 

only for those MRs covered by a selected pattern from the 

codebook. Overall, this affords superior prediction and 

compression efficiency as well as reducing the coding time for 

smooth motion sequences by on average 32%, compared to 

H.263.

Classification of an RMB in previous algorithms [6]–[8] 

and [12] has used a similarity metric to identify significant 
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overlapping between the MR and the patterns, so the best pattern 

can be selected to represent the MR. Empirical results in [8] 

confirm that between 16% and 34% of the total MBs are 

classified as RMBs for smooth motion sequences [11]. The 

similarity metric, however, is applied much more often as the 

number of CRMBs will always be higher. Motion estimation, 

irrespective of a scene’s complexity, typically comprises more 

than 60% of the processing overhead required to encode an inter 

picture with a software codec using the DCT [10], when full 

search is used. A corollary of this is that the computational 

efficiency of a similarity metric for a CRMB is critical to the 

overall complexity, since for example, for a codebook size of 32 

patterns, the metric represents ≈ 55% of the ME time. Hence, 

any strategy that improves the computational efficiency of the 

metric concomitantly reduces the overall encoding complexity.  

This paper presents a generic computational strategy, 

which can be embedded into any pattern-based coding scheme. 

For instance, when applied with an existing similarity metric a 

reduction of up to 81% in the number of operations is achieved. 

The paper also presents a new similarity metric, which selects 

the best-matched pattern by considering only the mismatched 

area of moving regions instead of the mismatch areas of both 

moving region and the pattern. The new similarity metric using 

this criterion requires 22% fewer operations than the existing 

similarity metric. 

This paper is organized as follows. The existing and new 

similarity metrics are described in Sections 2 and 3 respectively, 

while the new computation strategy and complexity impact on 

coding are discussed in Sections 4 and 5 respectively. Some 

conclusions are presented in Section 6.  

2. EXISTING SIMILARITY METRIC 

The dissimilarity between a pattern Pn and the moving region M

of a CRMB was measured in [6]–[8] and [12] as:- 

= =
−=

15

0

15

0

1 ),(),(),(
x y

nn yxPyxMPMS .                   (2) 

where PC1 ≤≤ n . If 
11 ),(:PC Snn TPMSP <∈∃ , the CRMB is 

classified as an RMB and its MR is represented by a pattern Pi

such that  

)),(),((minarg
111

PC
Snn

nP
i TPMSPMSP <=

∈∀
           (3) 

where 
1ST is the predefined similarity threshold; otherwise the 

CRMB is classified as an AMB. The subscript ‘1’ signifies that 

threshold is dependent on a specific similarity metric.  

Lemma 1:
11 ),( nnn PMPMPMS ¬∧∨∧¬=

111
2 nn PMPM ∧−+= .

Proof. From Table I, it can be shown that ),(1 nPMS

= =
¬∧∨∧¬=

15

0

15

0
1

),(),(),(),(
x y

nn yxPyxMyxPyxM  using sum 

of products of minterms. As all three logical operators {¬, ∧, ∨}

work on the corresponding elements of the metrics, relation 

11 ),( nnn PMPMPMS ¬∧∨∧¬=  holds. Similarly, from 

columns 3 and 4 in Table I, relation 

1111
2 nnnn PMPMPMPM ∧−+=¬∧∨∧¬ holds.            

Table I: Equivalence table where M and Pn refer to ),( yxM and

),( yxPn  respectively. 

M nP
nPM −

1

11

2 n

n

PM

PM

∧

−+
1nPM ¬∧

1

1

nPM

M

∧

−

0 0 0 0 0 0 

0 1 1 1 0 0 

1 0 1 1 1 1 

1 1 0 0 0 0 

3. NEW SIMILARITY METRIC 

For this new metric, the dissimilarity of pattern Pn from the 

moving region M of a CRMB is defined as:-  

12 ),( nn PMPMS ¬∧=                             (4) 

where PC1 ≤≤ n . As in the metric in Section 2, if 

22 ),(:PC Snn TPMSP <∈∃ , the CRMB is classified as an RMB 

and its MR is  represented by a pattern Pi such that  

)),(),((minarg
222

PC
Snn

nP
i TPMSPMSP <=

∈∀
          (5) 

where 
2ST is the predefined similarity threshold; otherwise the 

CRMB is classified as an AMB. 

From Table I, since the column 5 and 6 are equivalent, the 

following Lemma can be proven: 

Lemma 2:
112 ),( nn PMMPMS ∧−= .                    

The key difference between the new and existing similarity 

metric (Section 2) is best illustrated by the example in Figure 

2(a) for a pattern P12 and moving region M. The existing metric 

considers the two non-overlapping (black) regions shown in 

Figure 2(b) as the measure of dissimilarity of a CRMB; while the 

new metric uses only the non-overlapping area of M as shown in 

Figure 2(c). Formally, both these dissimilarity metrics are 

expressed as ))(())(( 121212 MPPMPM ∩−+∩−  and 

)( 12 MPM ∩−  respectively. As the average MR size 

((8+128)/2 = 68) is comparable to that of any predefined pattern 

from the codebook (64 moving pixels), intuitively the mismatch 

area obtained using the new similarity metric will typically be 

half that of the existing metric. The following heuristic is 

therefore justified in order to classify approximately similar 

number of RMBs from a set of CRMBs: 

132

68
1

2

S

S

T
T =                                              (6) 

Table II shows the empirical results for seven standard video 

sequences, using 
1ST  and 

2ST as the existing and new similarity 

metrics respectively. In all examples the new metric captured 

more RMBs, while Table II also reveals that the classification of 

a CRMB differed between the two metrics.  
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(a)

                                                                                                   

(b)

                                                                                                      

(c)

Figure 2: (a) Similarity example for of a moving region M of a 

CRMB and pattern P12; (b) Two non-overlapping areas (black) 

relevant to the existing similarity metric; (c) The non-

overlapping area (black) relevant to the new similarity metric. 

Experiments confirmed that up to 3.6% of MBs classified 

as RMBs by the existing, but by not the new metric, had 

relatively large moving regions, approximately half of the MB. 

These should have actually been classified as AMBs and the new 

similarity metric does this. The experiments also revealed that up 

to 10.4% of MBs classified as RMBs by the new, but not the 

existing metric, had relatively small moving regions, yet were 

too large to be classified as SMBs and so were treated as an 

RMB for superior quality. The corollary of this finding is that 

the new similarity metric provides better control in choosing the 

similarity threshold in regard to whether a MB is classified as a 

RMB or AMB.  

Table II: Percentage of RMBs generated by the ASPS algorithm 

[8] with respect to the total MBs using existing (S1) and new 

similarity metric (S2) and various S1, S2 permutations. 

Video sequences By S1 By S2

By S1 not  

by S2

By S2 not 

by S1

Miss America 18% 22% 1.0% 5.3% 

Suzie 21% 26% 1.8% 6.9% 

Mother&Daughter 24% 33% 1.0% 10.4% 

Carphone 24% 27% 3.2% 5.8% 

Foreman 24% 25% 3.6% 4.8% 

Salesman 27% 34% 0.6% 7.4% 

Claire 14% 16% 0.3% 2.1% 

The following Lemma ensures that in all cases, where both 

metrics classify a CRMB as an RMB, the same pattern is chosen 

to represent the MR of the CRMB, thereby ensuring the coding 

efficiencies using both these metrics will be comparable. 
    

Lemma 3: ),(),([ 11 vuuvu PMSPMS Θ∀∀ ≠

)],(),( 22 vu PMSPMS Θ⇔ where },,,,,{ ≥≤><≠=∈Θ .

Proof: Let Pu and Pv be two arbitrarily selected patterns in PC 

such that u ≠ v. ),(),( 11 vu PMSPMS Θ

;)2()2(
111111 vvuu PMPMPMPM ∧−+Θ∧−+⇔ By 

Lemma 1. 

;
11 vu PMPM ∧−Θ∧−⇔    64

11
== vu PP .

;)()(
1111 vu PMMPMM ∧−Θ∧−⇔

);,(),( 22 vu PMSPMS Θ⇔  By Lemma 2.                                

Theorem 1: The existing and new similarity metrics S1 and S2

are equivalent to identifying the best pattern for any moving 
region.                                                                                

4. NEW COMPUTATION STRATEGY 

The similarity metric calculation in (2) requires 256 subtractions, 

256 absolute and 255 addition operations. From Lemma 1 and 2,  

111
2 nn PMPM ∧−+  and 

11 nPMM ∧−  are the equivalent 

of the existing and new similarity metrics, so the flow diagrams 

in Figure 3 can be constructed. For a particular MR, the 

similarity computation (those operations highlighted in the 

shaded region) in Figure 3(a) and 3(b), is performed for each 

pattern in the PC, while those in the non-shaded region are 

performed just once.  

(a) (b) 

Figure 3: Flowchart of new computation strategy on (a) existing, 

(b) new similarity metric, where NOP means No Operation. 

For the existing similarity metric in Figure 3(a), the 

parameter S1 is initialised to the pattern size, namely 64. In order 

to find the mismatch of the moving region M, 256 compare 

operations are required for all CRMBs. From Section 3, since on 

average M = 68, for all CRMBs, then 68 compare operations are 

required. As Figure 3(a) shows, during each of these 

comparisons, the corresponding pattern position is checked and 

if it is 1, then S1 is decremented, otherwise it is incremented. 

Irrespective of overlapping or non-overlapping between MR and  

a pattern, the number of operations required for a particular 

CRMBs is therefore 256+λ(68+68), where λ is the pattern 

codebook size. In contrast, the total number of operations when 

this computation strategy is not applied is (3×256-1)λ. When 

considering pattern matching algorithms having a maximum 

value of λ = 32, the new computation strategy reduces the total 

number of operations by approximately 81%.    

Conversely, the new similarity metric in Figure 3(b), 

initialises S2 = 0, and does not need not to perform any 

operations when there is ‘1’ in the corresponding position of 

both MR and pattern i.e. overlapping regions. When there is a 

total overlap between the MR and pattern, only (68–64) = 4 

operations are required. When there is no overlapping, i.e., the 

corresponding position is ‘0’ both the existing and new similarity 

metrics require the same number of operations namely 68 (i.e., 

the maximum size of the MR). Thus, on average, the new 

similarity metric requires 32 fewer operations compared with the 
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existing metric i.e., 256+λ(68+36) operations, which is 22% 

fewer.

5. COMPUTATIOANAL IMPACT UPON PATTERN 

BASED CODING 

To analyse the impact of this new metric on pattern-based 

coding, assume a MB size of m × m and maximum motion vector 

length d. While there is a pattern-based coding overhead, 

covering the selection of the best pattern for an RMB using the 

similarity metric, pattern identification coding and residual error 

arrangement, the major saving is in ME, where only a quarter of 

a MB needs to be searched. Table III shows that compared to 

H.263, an improvement of between 19% and 52% is achieved in 

encoding time per frame using the existing similarity metric and 

between 21% and 58% using the new similarity metric and 

generic computation strategy.  

Table III: Percentage saving in coding time per frame compared 

to H.263 using the existing similarity metric without the generic 

computation strategy and the new similarity metric with the 

generic computation strategy. 

Video sequences

Existing similarity 

metric

New similarity 

metric

Miss America 40% 45% 

Suzie 24% 27% 

Mother&Daughter 39% 43% 

Carphone 23% 25% 

Foreman 19% 21% 

Salesman 52% 58% 

Claire 46% 51% 

6. CONCLUSIONS 

This paper has presented a new similarity metric to efficiently 

compute the best pattern representation of a moving region in 

very low bit-rate, blocked-based, video coding. Unlike the 

existing similarity measure which considers the mismatch areas 

of both the moving region and pattern in selecting the best-

pattern from the codebook, the new metric only considers the 

mismatch area of the moving region. A generic computation 

strategy for this similarity metric has also been presented. It has 

been proven that the same pattern is selected for a particular MR 

of macroblock using both metrics; however, the computational 

efficiency of the new approach provides an improvement of up 

to 58% compared with the H.263 coding standard.  
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