
GEOMETRICALLY DETERMINING LEAKY BUCKET PARAMETERS FOR VIDEO
STREAMING OVER CONSTANT BIT-RATE CHANNELS

Ping Li , W.S. Lin, S. Rahardja, X. Lin, X.K. Yang, Z.G. Li

Media Division, Institute for Infocomm Resarch, 21 Heng Mui Keng Terrace, Singapore 119613
Email: imliping@hotmail.com, {wslin, rsusanto, linxiao, xkyang, ezgli}@i2r.a-star.edu.sg

ABSTRACT

For streaming of pre-encoded bitstreams over constant bit rate (CBR)
channels, the channel bandwidth, the receiver buffer capacity as
well as the latency requirement vary greatly from application to
application. In this paper, we propose an algorithm to determine
the minimum buffer size and the minimum start-up delay required
for streaming a pre-encoded bitstream over CBR channels at any
specific bit rate. The proposed method employs geometric opera-
tions to derive the optimal determination for low or high bit rates
and sub-optimal determination for medium bit rates. The results
have been compared with the H.264/AVC hypothetical reference
decoder. The proposed approach provides a theoretical insight and
a simple but effective algorithm for determining the leaky bucket
parameters for video streaming over CBR channels.

1. INTRODUCTION

One of the goals of video streaming is to start playback at the de-
coder with a limited buffer capacity as fast as possible while the
video stream is being downloaded at a specific bit rate. For differ-
ent video streaming applications, the bandwidths of the transmis-
sion channels, the buffer capacities of the decoders as well as the
latency requirements may vary greatly. Determining the minimum
buffer size and the minimum start-up delay required for the stream-
ing a pre-encoded bitstream over CBR channels is necessary. The
Video Buffering Verifier (VBV) [1, 2] in MPEG and the Hypo-
thetical Reference Decoder (HRD) [3, 4] in H.264 are proposed
to address the above problem. A VBV/HRD-compliant bitstream
guarantees that the bitstream can be delivered to the terminal with
a given buffer capacity using a given transmission bit rate and then
decoded using a given start-up delay. A closely related concept
with VBV/HRD is the leaky bucket model [5, 6], which is a direct
metaphor of the encoder output buffer and can be characterized by
(R, B, Γ), where B is the encoder buffer size, R is the transmis-
sion bit rate, Γ means the transmission of the bits in the encoder
buffer starts Γ seconds after the bits for the first frame enter the
buffer.

An encoder usually creates a bitstream according to a specific
leaky bucket. For streaming of an bitstream created using leaky
bucket (R, B, Γ), if the channel bandwidth, the buffer capacity
and the initial delay for the specific video application happen to be
equal to those specified by the given leaky bucket, then there will
be not any problem in delivering and decoding the bitstream. How-
ever, if any of the three parameters differs from that specified by
the leaky bucket, problem will occur if we do not adjust the other
two parameters accordingly. In [5], a Generalized Hypothetical
Reference Decoder (GHRD) for H.264/AVC is presented to solve
this problem. The idea of GHRD is as follows: Given a number of

leaky buckets that are known to contain the bitstream, the decoder
can determine which leaky bucket to use knowing the available bit
rate. If the available bit rate is already specified by one of the leaky
buckets, then that leaky bucket is used directly. Otherwise, a lin-
early interpolated or extrapolated leaky bucket that safely contains
the bitstream is used. In this paper, we attempt to geometrically de-
termine the minimum buffer size and the minimum start-up delay
required for streaming a pre-encoded bitstream over CBR channels
at any bit rates.

The rest of this paper is organized as follows. In Section 2, the
leaky bucket model is introduced and the connection between the
encoder buffer and decoder buffer in a video streaming system is
examined. In Section 3, we describe our algorithm that geometri-
cally determines minimum buffer size and minimum start-up delay
for a fixed bit rate. In Section 4, we implement the proposed algo-
rithm in a H.264/AVC video encoder and evaluate its performance.
Section 5 concludes this paper.

Fig. 1. Virtual encoding, transmission and decoding processes in
a video streaming system

2. LEAKY BUCKET MODEL

A video streaming system comprises of a virtual encoder, a vir-
tual transmission channel and a virtual decoder. As shown in Fig.
1, the virtual encoder reads the bits from the given pre-encoded
bitstream and pushes bits b0 for frame f0 into the encoder buffer
instantaneously at time instant E0. After an initial encoder buffer
delay Γe, bits in the encoder buffer are drained to a CBR channel
until the buffer becomes empty. Subsequently, bits bi for frame fi

are instantaneously pushed into the encoder buffer at instant Ei.
At the decoder side, bits received from the channel are pushed into
the decoder buffer at a constant bit rate except when there is no
bits transmitted from the channel. After an initial decoder buffer

III - 1530-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

delay Γd after the first bit enter the decoder buffer, bits b0 are then
instantaneously removed from the buffer at time instant D0 for re-
constructing frame f0 . Subsequently, bits bi are instantaneously
removed from the decoder buffer at time instant Di to reconstruct
frame fi. At the same time, bits from the channel are continuously
pushed into the buffer at a constant bit rate except when no bits are
received from the channel.

The virtual encoding, transmission, and decoding processes
are graphically illustrated in Fig. 1, where Be is the encoder buffer
size; Bd is the decoder buffer size; ui−1 denotes the buffer under-
flow between time instants Ei−2 and Ei−1, during which encoder
buffer is empty and the transmission process is paused; δ is a con-
stant end-to-end delay from the encoder to the decoder; R, bi, Ei,
Di are as described before. Obviously, to guarantee the decodabil-
ity of the transmitted bitstream, we must make sure the decoder
buffer is neither underflowed nor overflowed so that the decoder
can get bi at time instant Di to reconstruct frame fi.

With above notations, we can easily prove the following ob-
servation: if there is no overflow and underflow in the encoder
buffer, the decoder buffer will neither overflow nor underflow if
the decoder buffer size is equal to the encoder buffer size, i.e.,
Be = Bd = B, and if the sum of the initial encoder and de-
coder buffer delays is set to B/R, i.e., Γe + Γd = B/R, and if
the encoding schedule is the same as the decoding schedule. Due
to space stringency, we do not include the proof in this paper.

Based on above observation, we can say if an bitstream is
contained by a leaky bucket (R, Be, Γe), certainly the bitstream
can be successfully delivered to the decoder with a buffer size Be

using the transmission bit rate R and then decoded using the start-
up delay Γd = Be/R−Γe at the same frame rate as that of virtual
encoder. Thus, once we can find out the lowest or highest bounds
of Be and Γe for the encoder buffer, the minimum resources re-
quired to transmit and decode the bitstream when bit rate is fixed
can be easily determined. In the following discussion, our focus
will be on the virtual encoder side and we use (R, Be, Γd) to char-
acterize the leaky bucket for the encoder buffer since Γe and Γd

are compliment of each other.

3. DETERMINE MINIMUM BUFFER SIZE AND
MINIMUM START-UP DELAY

Fig. 2. Virtual encoding process and some important notations
used in this paper

The virtual encoding process using leaky bucket (R, B, Γ)
at a fixed frame rate F is graphically illustrated in Fig. 2, where
N is the number of the video frames in the video sequence. In

the figure, the step-wise curve in the figure denotes the amount
of bits written into the encoder buffer and is referred to as bits-
written curve; the lowest curve (strait when no underflow) denotes
the amount of bits transmitted over the channel and is referred to as
the bits-transmitted curve; the highest curve (strait when no under-
flow) denotes the buffer bounding on the bitstream and is referred
to as buffer-bounding curve. Clearly, buffer-bounding curve must
be parallel to bits-transmitted curve and bits-written curve must be
below buffer-bounding curve and above bits-transmitted curve.

With the above notations, our problem to determine minimum
buffer size and minimum start-up delay for fixed bit rate is equiva-
lent to finding a pair of parallel curves (bits-transmitted curve and
buffer-bounding curve) that tightly bounds the bits-written curve.

The vertical coordinates of the all the feature points denoted
using “×” in Fig. 2 can be obtained in the actual encoding process.
The horizontal coordinates of the feature point at time instant xi

equals to x0+i/F , where x0 can be set to 0 since it does not affect
our geometric analysis. All the vertexes of the convex polygon,
which is shown in the dotted line in the figure, are selected as the
feature points.

Fig. 3. Determination of minimum buffer size and minimum start-
up delay when transmission bit rate is small and xlow ≤ xup

Fig. 3(A) shows virtual encoding process when no buffer
underflow occurs, in which the buffer-bounding curve and bits-
written curve are two straight lines and are denoted as lup and llow

respectively. As we see, lup crosses the feature point (xup, yup)
and llow crosses the feature point (xlow, ylow). The minimum
buffer size Bmin and minimum start-up delay Γmin can be eas-
ily computed as follows:

Bmin = (yup − ylow) − (xup − xlow)R (1)

Γmin = Bmin/R − (xlow − ylow/R) (2)

Fig. 3(B) shows the virtual encoding process when the en-
coder buffer start-up delay (xdly −x0) is reduced while the bit rate
R remains unchanged. In this case, two buffer underflows um and
ul occur before time instant xlow. From the figure, we observe that
the buffer size and start-up delay computed by Equations 1 and 2
are optimal as long as xlow ≤ xup since any underflow at this bit
rate will result in an increase of Γ although B remains unchanged.

Fig. 3 only shows the case when xlow is smaller than xup,
which usually happens when R is small. If R is increased further,
xlow may become greater than xup and the above derivations may
not be true. In the following discussion, R1 denotes the bit rate
that separates the xlow ≤ xup from xlow > xup. R1 can be easily
computed and at most cases is approximate to the observed aver-
age bit rate of encoded bitstream. Fig. 4(A) shows the case when

III - 154

➡ ➡

xlow is greater than xup and when no encoder underflow occurs.
At this case, we can also compute a buffer size using Equation 1.
However, the obtained buffer size is not optimal for the given bit
rate R.

Fig. 4. The situation when transmission bit rate is high and xlow

is greater than xup

As illustrated in Fig. 4(B), because of the small initial encoder
buffer delay and the large transmission bit rate, the encoder buffer
often becomes empty and results in the frequent pausing of the
transmission process. Clearly, the bits-transmitted curve is now a
complex piece-wise curve that corresponds to the transfer-pause-
transfer-style transmission process. Thus, to determine the mini-
mum buffer size, we need to find two parallel piece-wise curves
that tightly bounds the bits-written curve. In that case, the tan-
gent points may no longer be the vertexes of the convex polygon
whose coordinates are known to us and it is difficult to determine
the optimal minimum buffer size.

Fig. 5. Determination of minimum buffer size and minimum start-
up delay under a fixed bit rate when xlow is greater than xup

The determination of minimum buffer size and minimum start-
up delay when bit rate is high and xlow > xup is illustrated in Fig.
5, where xstart denotes the time instant when underflow starts to
occur and xend denotes the time instant when underflow ends to
occur. Obviously, xend equals xlow. As shown in Fig. 5, when we
attempt to determine the local minimum buffer size B′′

min that con-
tains the bitstream segment from the time instant xstart to xend, it
is safe to use the lower edge and upper edge of the convex polygon
to denote the bits-transmitted and bits-written curves. In this way,
B′′

min can be computed as the max vertical distance between the
two edges of the convex polygon from xstart to xend. The other

two local minimum buffer sizes B′

min and B′′′

min that respectively
contain the bitstream segments before xstart and after xend can
be easily computed using Equation 1. After we obtain the three
local minimum buffer sizes, the largest is selected as the minimum
buffer size Bmin that contains the entire bitstream.

Obviously, if the transmission bit rate is higher than R2 =
bmax × F , where bmax is the max frame size, then the buffer
underflow will occur in every frame interval and thus B′′

min can be
directly set to bmax. Clearly, an optimal buffer size is obtained at
this case.

From Fig. 5, we see if the convex polygon can not tightly
bound the bits-written curve, the max vertical distance B′′

min may
be very large and thus the performance of our algorithm when
R1 < R < R2 may not be good. In this case, it may be better
if we linearly interpolate 1 a buffer size based on the buffer sizes
at R1 and R2, which are optimal. Or, we can even use the GHRD
to derive the minimum buffer size.

4. RESULTS AND DISCUSSIONS

In this section, our algorithm is implemented in a H.264/AVC
reference video encoder JM6.1e [7] to evaluate its performance.
Three video sequences news.qcif, forman.qcif and container.qcif
are tested. For all three sequences, the first 300 frames are en-
coded at a frame rate of 30 frames per second. Only the first frame
is encoded as “I” frame and all the rest 299 frames are encoded as
“P” frames. The other test conditions are as follows: MV resolu-
tion = 1/4 pel, RDO = OFF, search range = 16 and reference frames
= 1. The results for three sequences demonstrate the same obser-
vation and we only present the results for forman in the following
discussion.

0 50 100 150 200 250 300

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

feature point

bits-written curve

lower edge of the convex polygon

upper edge of

the convex polygon

B
its

Frame

Fig. 6. The bits-written curve and the convex polygon when for-
man is encoded using a fixed quantization parameter that is equal
to 28; the observed average bit rate is 144.0 Kbits/second

Fig. 6 illustrates the actual bits-written curve and the feature
points obtained in the experiment, where we see the number of the
feature points is quite small. Although we encode all 300 frames
of the video sequence, only 15 feature points are observed. Table 1
lists the 5 results obtained by our algorithm at 5 different bit rates,
which are referred to as RS1, RS2, . . . , RS5 respectively. Note

1As proved in [5], a linearly interpolated buffer size is able to
safely contain the bitstream.

III - 155

➡ ➡

since all the X coordinates in the experiments are the indexes of
the frames in the video sequence, the start-up delays in Table 1 are
measured in frame intervals. To convert it to time in seconds, it
needs to be divided by the frame rate. By our algorithm, R1 is
computed as 142Kbits/s (RS2) and R2 is computed as 290Kbis/s
(RS4). The corresponding buffer sizes are 135371bits and 9656bits
respectively. The meaning of R1 and R2 is explained in Section 3.

Table 1. Five results obtained by the proposed algorithm
Results RS1 RS2 RS3 RS4 RS5

R (Kbits/s) 75 142 225 290 350

Bmin (bits) 673984 135371 64867 9656 9656

Γmin (frame intervals) 268 1.15 0.41 0.32 0.27

RS1 and RS2 are optimal because, in these two cases, bit rates
are smaller than or equal to R1. RS4 and RS5 are also optimal
because, in these two cases, R is greater than or equal to R2 and
the max frame size bmax is selected as the minimum buffer size.
RS3 is not optimal because, in this case, R1 < R < R2 and we
use the upper edge and lower edge of the convex polygon to denote
the actual bits-written curve and bits-transmitted curve.

As described in Section 1, interpolation or extrapolation may
be needed by GHRD to determine the leaky bucket to use. At this
point, our algorithm has the advantage over the GHRD since our
algorithm does not need the interpolation or extrapolation opera-
tion and can always computes an optimal result when R ≤ R1 or
R ≥ R2. When R1 < R < R2, the results by our algorithm is not
optimal. In this case, we may use GHRD to determine minimum
buffer size. Or else, a linearly interpolated buffer size based on
RS2 and RS4 can be used, as shown by RS3 in Table 1.

Table 2. Leaky bucket parameters (R, B) computed by the Mat-
lab program in [5];we assume the actual transmission bit rate is
within the range [R̄− R̄, R̄+ R̄], where R̄ is the observed average
bit rate of the bitstream and is equal to 144Kbis/s in our experi-
ment.

R (Kbits/s) 50 100 150 200 250 300

B (bits) 919317 424338 115992 40211 12691 9656

Table 2 lists the leaky bucket parameters that are used by
GHRD to determine the leaky bucket for use. At any bit rate that is
smaller than R1, say R = 75Kbits/s, for GHRD, Bmin can be lin-
early interpolated and is 671828bits. However, by our algorithm,
as shown in Table 1, Bmin is directly computed as 670984bits,
which is slightly smaller than that by GHRD. At any bit rate that is
greater than R2, say R = 350Kbits/s, for GHRD, the buffer size is
linearly extrapolated as 6621bits, which is smaller than bmax and
is not correct (this problem can be avoided by increasing the num-
ber of the leaky bucket parameters in the higher bit rates). How-
ever, for our algorithm, since R ≥ R2, Bmin can be directly set to
bmax, i.e., 9656bits. When the bit rates are within the range from
142Kbits/s to 290Kbits/s, the result by GHRD will be better than
ours in current experiments and we may use GHRD to derive the
buffer size. In that case, we also need to record the leaky bucket
parameters whose bit rates are between R1 and R2. For the start-
up delay, our algorithm can obtain an optimal result at any bit rate.

At this point, our algorithm also has the advantage over GHRD
in which interpolation or extrapolation are needed to compute the
start-up delay.

From Fig. 6, we see the observed bits variation of the bit-
stream is quite large since no restriction is imposed on the bits
variation by the fixed-QP rate control scheme. The convex polygon
can not bound the bits-written curve tightly. The non-optimal re-
sults when R1 < R < R2 have large potential to be improved. For
example, by inserting several feature points, the single big convex
polygon may be broken into several smaller polygons that bounds
the bits-written curve much more tightly than current one. The
Bmin by our algorithm when R1 < R < R2 can thus be fur-
ther reduced. We have implemented this multi-polygon algorithm.
However, we do not present it in this paper due to space stringency.

Our algorithm can achieve optimal buffer sizes for all bit rates
if R1 equals R2, i.e., if the average frame size equals the max
frame size. Thus, for most video streaming applications, in which
the bit rate variation can not be too large and R2 is close to R1,
our algorithm can achieve very good results.

5. CONCLUSION

A novel algorithm that is able to geometrically determine the op-
timal (when R ≤ R1 or R ≥ R2) and sub-optimal (when R1 <
R < R2) buffer size and optimal start-up delay for streaming a
pre-encoded bitstream over CBR channels at any bit rate is pro-
posed. The proposed approach provides theoretical insight as well
as a simple but effective algorithm for determination of the leaky
bucket parameters. The devised algorithm require little extra in-
formation from the encoding process since only the maximum
frame size and the coordinates of a few feature points need to be
recorded. Moreover, the computational complexity is very small
since it involves merely a few simple geometric operations that are
easy to implement.

6. REFERENCES

[1] “Annex C, Video Buffering Verifier”, in Information Technology-
Generic Coding of Moving Pictures and Associated Autio Informa-
tion: Video (MPEG-2/H.262), 2000, ISO/IEC 138 180-2.

[2] “Levels for MPEG-4 Visual Profiles”, ISO/IEC JTC1/SC29/WG11,
MPEG2001/N4507, Pattaya, December 2001.

[3] “Annex B, Hypothetical Reference Decoder”, in Video Coding for
Low Bit Rate Communication, ITU-T Recommondation H.263, Jan-
uary 1998.

[4] E. Viscito, “HRD and related issues”, Joint Video Team (JVT)
of ITU-T SG16/Q15 (VCEG) and ISO/IEC JTC1/SC29/WG11
(MPEG), Klagenfurt, Austria, July 2002, Doc. JVT-D131.

[5] Jordi Ribas-Corbera, Philip A. Chou, and Shankar L. Regunathan,
“A Generalized Hypothetical Reference Decoder for H.264/AVC”,
IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 13, No. 7, July 2003.

[6] “Hypothtical Referece Decoder”, in Joint Video Team (JVT) of ITU-
T SG16/Q15 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG),
Pattaya, Thailand, December 2001, Doc. JVT-B118.

[7] “JVT Test Model JM”, Joint Video Team (JVT) of ITU-T SG16/Q15
(VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG), Klagenfurt,
Austria, July 2002, Doc. JVT-D147.

III - 156

➡ ➠

