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ABSTRACT

The three-dimensional wavelet transform is extremely important 

for image and video processing.  This paper presents a number 

of three dimensional non-separable wavelet transforms each of 

which are obtained using a lifting scheme.  The performances of 

the new wavelets in terms of psycho-visual reconstruction 

quality and peak signal-to-noise ratio are compared to tensor 

product wavelets in a lossy image compression application. 

1. INTRODUCTION 

During the last decade wavelets have taken there place at 

the forefront of research for the development of image 

and video processing applications.  These wavelet based 

approaches have outperformed existing strategies in many 

areas including image denoising, segmentation and most 

notably compression.  Results have shown that wavelets 

offer improved compression ratios, and produce less 

visually detrimental artefacts when compressing at low bit 

rates than previous approaches such as the Discrete 

Cosine Transform (DCT), and for this reason wavelet 

based coding is being introduced into emerging standards 

such as JPEG 2000 [1]. 

 Leading researchers have exposed a wide variety 

of wavelet bases with their own individual mathematical 

properties suitable for different applications.  Authors 

such as Shapiro [2], Pearlman [3,4], and Taubman [5] 

have lead to the development of novel, efficient 

algorithms for wavelet based encoding which exploit the 

hierarchical structure of the transform, and also most 

recently, Sweldens, Daubechies and Calderbank have 

developed an alternate method for the construction of 

wavelets using an approach known as lifting [6,7].  This 

method does not require auxiliary memory unlike the 

computation of the discrete wavelet transform through 

convolution.  It is the aim of this paper to use a 

combination of these ideas to develop a number of novel 

non-separable wavelet transforms for use in the field of 

three-dimensional image compression. 

 The remainder of this paper is structured as 

follows.  Section 2 begins by introducing the one-

dimensional lifting based LeGall 5/3 wavelet transform.  

Section 3 outlines the proposed framework for non-

separable lifting.  In section 4 lossy coding results for 

both separable and non-separable wavelet transforms are 

analysed.  Finally we conclude with a brief summary of 

our results and some closing remarks in section 5. 

2. THE LIFTING SCHEME 

2.1. Introduction 

The lifting scheme is an efficient approach which is more 

flexible than the convolution methodology and can be 

used to define a wavelet basis on an interval or on an 

irregular grid without using the concept of the Fourier 

transform.  All classical wavelets can be generated using 

the lifting strategy [6,7]. 

 Initially for the one dimensional case the lazy 
wavelet transform is applied to the signal.  This process 

splits the samples into even and odd components.  The 

resulting two sets are closely correlated and so it is only 

natural that given one set, e.g. the odd, one can be a good 

predictor for the other set.  Although this prediction will 

normally be satisfactory it will not be necessary to keep 

this information in both sets, we store only the part of the 

set which is not predictable or the prediction error.  This is 

known as dual lifting.  This is useful; however, we loose 

some vital properties such as the mean value of the signal.  

This mathematical property can be restored using what is 

known commonly as a primal lifting step, where the 

second set is updated with data from the new subset.  

Another interesting and useful property of the lifting 

scheme is the ease of inversion.  The inverse transform 

can be calculated by simply reversing the order of the 

operations and inverting the signs in the lifting steps. 

2.1. Mathematical Background 

To date two wavelet bases have been specified for 

inclusion into the JPEG 2000 ISO standard.  These are the 

LeGall 5/3 filter for lossless compression and the 

Daubechies 9/7 filter for lossy compression.    JPEG 2000 

will use lifting for wavelet construction. 
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Mathematical formulations for the construction

of wavelets using the 5/3 LeGall filter [6] are shown

below where x is the initial input signal 
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The flooring function is required for the mapping of

integers to integers for lossless compression. Using this

lifting scheme special care must be used at the signal

boundaries for the wavelets to explicitly live on the

discrete set where the data is defined.

3. PROPOSED APPROACH 

3.1. Introduction

Typically for wavelet based multi-dimensional

compression a tensor product of one-dimensional wavelet

transforms are used.  However, the same lifting

description can be applied directly for multi-dimensional

data.  We propose three separate three-dimensional non-

separable transforms based on the Haar, LeGall 5/3 and 

Daubechies 9/7 biorthogonal filters.
The motivation for using non-separable wavelet

transforms for image compression is to attempt to

minimise or eliminate any blocky artefacts commonly

associated with tensor product based wavelet transforms.

These visually detrimental artefacts are particularly 

evident in the case of Haar wavelets as they are 

characteristic functions of squares. Non-separability

allows for more degrees of freedom in design and has

filters which are better adapted to the human visual

system.

3.2. Non-Separable Framework 

Our approach is inspired by the work of Uytterhoeven and 

Bultheel who applied a similar construction based on the

Red-Black Gauss-Seidel technique to two-dimensional

data for use in the field of image denoising [8].  However, 

for the case of three-dimensional data a number of 

problems arise.  We must have at least a three step 

decomposition for the Mallat pyramidal representation to

hold.  To obtain this the molecular structure at each lifting

stage must change which is certainly not the case for two-

dimensional data.  The technique initially splits the data

into two subsets.  Unlike the one-dimensional approach

where even-odd splitting occurs, in the three-dimensional

case checkerboard splitting occurs with red and black

cubes.  The next step is to predict values of the red subset

from its nearest horizontal and vertical neighbours in the

black set.  The elements in the black subset are replaced

by the prediction errors. Next we update the red subset

from the new black subset values to preserve the average 

value of the data.  To achieve a lower resolution

approximation of the original data it is necessary to

consider the diagonal neighbours also.  For this we must

partition our new red subset into two new sets, say blue

and yellow.  Similarly to the previous resolution level the

yellow subset elements are predicted using linear

interpolation based on nearest neighbours. The blue

elements are then updated using the yellow coefficients to

preserve the average value.  To obtain the correct 

decomposition structure the final step involves splitting 

the blue set into green and white subsets.  The result of

this process is a green set representing a low resolution

version of the original three-dimensional image, and a 

white set representing the detail information (cfr. 2).  The

next step of the three-dimensional decomposition will be

performed only on the green set.  The decomposition will

use periodic symmetric extension at the signal boundaries

as the wavelet decompositions are derived from 1d filters 

which are symmetric [1]. The following section outlines

the procedure necessary for decomposition using the

three-dimensional non-separable LeGall 5/3 filter.  The 

Haar and Daubechies cases mentioned later can also be

derived from this framework.

(a) (b)

Figure 1: Subband structures after the 3D;

(a) Separable decomposition.

(b) Non-separable decomposition

Figure 2: Splitting procedure for 3 slices. 

(a) black squares – black subset

(b) light grey squares – yellow subset

(c) dark grey squares – green subset

(d) white squares – white subset

3.3. The LeGall 5/3 Filter

Horizontal/Vertical Lifting 

1.   The 3D image is split into red cubes and black cubes.
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2. The black cubes are predicted by linear interpolation

of the six neighbouring red cubes. 
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3.   The red cubes are then updated using the previously

calculated black cubes to preserve the mean.
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Diagonal Lifting I 

4.  Partition the red cubes into blue and yellow subsets.

5.   The yellow cubes are predicted by linear interpolation

of the eight neighbouring blue cubes. 
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6.   The blue cubes are then updated using the previously

calculated yellow cubes to preserve the mean.
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Diagonal Lifting II 

7.   Partition the blue cubes into green and white subsets.

8.  The white cubes are predicted by linear interpolation

of the four neighbouring green cubes and the green

cubes are then updated using these white values to

preserve the mean.

4. RESULTS 

In this case we use SPIHT encoding to discuss the

suitability of both separable and non-separable wavelet 

transforms for three-dimensional image compression.

SPIHT is a wavelet based image compression

coder which is based on three underlying principles: (1) 

the exploitation of the hierarchical structure of the wavelet 

transform, by using a tree based organization of the

coefficients; (2) partial ordering of the transformed

coefficients by magnitude, with the ordering data not

explicitly transmitted but recalculated by the decoder; and 

(3) ordered bit plane transmission of refinement bits for

the coefficient values.  This leads to a compressed

bitstream in which the most important coefficients

(regardless of location) are transmitted first, the values of

all coefficients are progressively refined, and the

relationship between coefficients representing the same

location at different scales is fully exploited for

compression efficiency [3,4]. 

The non-separable Haar, LeGall 5/3 and

Daubechies 9/7 biorthogonal filters have been tested using

a number of 8bpp monochromatic images where the first

two are magnetic resonance image data and the third

image is a simulated three-dimensional data cube.  A three

level wavelet decomposition in employed in this study

with no partitioning.

(a) (b) (c)

Figure 3: Slice of each data set. (a) Human brain, (b) 

Human heart and (c) Simulated imagery.

The tables that follow show a comparison

between both approaches, in terms of the rate distortion

level versus the peak signal to noise ratio for lossy

compression performance.  The definition of the peak 

signal to noise ratio as employed in this study is, 
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],,[ kjix is the original three-dimensional image with

dimensions L x M x N and P bpp and is the

reconstructed image.

],,[ˆ kjix

Results show that in terms of PSNR and

reconstruction quality the inclusion of a diagonal lifting

step into the decomposition is beneficial. The psycho-

visual quality of the reconstructed image is substantially

improved with less visually detrimental effects being

apparent. In the case of the two MR images banding is

reduced along with the number of visual artifacts as 

shown in figure 4. 
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IMAGE-BRAIN     PSNR(dB) 

Separable Non-Separable

Bit

Rate

(bpp) Haar LeGall

5/3

Daub

9/7

Haar LeGall

5/3

Daub

9/7

0.125 22.50 25.10 25.62 22.49 25.13 25.87

0.250 25.01 27.75 28.39 25.03 28.87 29.01

0.500 28.18 33.16 32.06 28.27 33.27 33.57

1.000 31.67 36.11 36.14 32.10 36.99 37.03

2.000 35.23 42.24 40.97 36.85 42.77 41.15

Table 1: Results for 3D Brain scan. 

IMAGE-HEART     PSNR(dB) 

Separable Non-Separable

Bit

Rate

(bpp) Haar LeGall

5/3

Daub

9/7

Haar LeGall

5/3

Daub

9/7

0.125 23.22 26.22 26.28 23.16 26.34 26.36

0.250 26.17 28.62 29.14 26.14 28.81 29.33

0.500 29.32 34.11 34.16 29.33 34.56 34.63

1.000 31.96 37.81 37.99 32.40 37.98 38.51

2.000 36.10 43.49 42.18 36.75 43.60 43.01

Table 2: Results for 3D Heart scan. 

IMAGE-SIMULATION     PSNR(dB) 

Separable Non-Separable

Bit

Rate

(bpp) Haar LeGall

5/3

Daub

9/7

Haar LeGall

5/3

Daub

9/7

0.125 25.08 26.15 26.22 24.41 26.11 25.87

0.250 26.65 28.03 29.67 25.55 27.65 29.01

0.500 31.18 31.99 33.42 30.10 30.45 33.57

1.000 34.89 36.12 37.89 33.34 35.67 37.03

2.000 40.27 41.04 41.03 38.90 40.78 40.04

Table 3: Results for 3D simulated image.

(a) Original image - 

(b) Separable at 0.5bpp 

(c) Non-separable at

0.5bpp

Figure 4: Reconstruction quality of brain image (slice 35)

after separable and non-separable decompositions with 

LeGall 5/3 filter. 

Reconstruction quality is particularly good at high bit 

rates, however at lower distortion levels the LeGall and

Haar non-separable decompositions introduce some visual

artifacts. This may be due to the smoothness of their

equivalent 1d filters.  This was not evident when using the

Daubechies 9/7 non-separable wavelet transform. The

results we acquired for the simulated image were not as 

successful.  This is due to the nature of the simulated

imagery.  Its structure is blocky and therefore the Haar 

transform performed reasonably, particularly for the

separable case. 

5. CONCLUSIONS 

Several reversible integer-to-integer three-dimensional

non-separable wavelet transforms have been introduced.

They have been compared with their separable

counterparts on the basis of their lossy compression

performance using the set partitioning in hierarchical trees

encoding algorithm.  Results indicate that the three stage 

non-separable wavelet transforms perform more

efficiently for compression purposes in terms of the 

quality of the reconstructed image.
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