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ABSTRACT
This paper describes a novel video coding scheme based on a
three-dimensional Matching Pursuit algorithm. In addition to good

compression performance at low bit rate, the proposed coder al-

lows for flexible spatial, temporal and rate scalability thanks to

its progressive coding structure. The Matching Pursuit algorithm
generates a sparse decomposition of a video sequence in a series of

spatio-temporal atoms, taken from an overcomplete dictionary of

three-dimensional basis functions. The dictionary is generated by

shifting, scaling and rotating two different mother atoms in order
to cover the whole frequency cube. An embedded stream is then

produced from the series of atoms. They are first distributed into

sets through the set-partitioned position map algorithm (SPPM)

to form the index-map, inspired from bit plane encoding. Scalar
quantization is then applied to the coefficients which are finally

arithmetic coded. A complete MP3D codec has been implemented,

and performances are shown to favorably compare to other scal-

able coders like MPEG-4 FGS and SPIHT-3D. In addition, the
MP3D streams offer an incomparable flexibility for multiresolu-

tion streaming or adaptive decoding.

1. INTRODUCTION

Most successful video compression algorithms are based on the

hybrid approach that combines motion compensation between suc-

cessive frames, and DCT block transform. Such schemes have
been quite successful, and represent the core of the current com-

pression standards, like H263 or MPEG-4. While they provide in-

teresting performance in compression, these coders generally lack

a increasingly important feature, which is a flexible scalability.
The need for adaptive streaming or the possibility to offer differ-

ent resolutions from a single bitstream is fueled by the continu-

ing development of heterogeneous networks and infrastructure. In

streaming applications, for example, a progressive stream allows
to adapt to changing network conditions, or to clients with differ-

ent access bandwidths. Spatio-temporal scalability offers yet ad-

ditional flexibility since the frame rate, and the size of the decoded

frames can be adapted to the client capacities. Due to these recent
needs in adaptive coding, scalability is getting a lot of attention

and efforts from the research community.

A fine granular scalability (FGS) video coding scheme [1]

based on MPEG has recently been proposed to provide SNR scal-
ability. In the same context, Van der Schaar and Hayder [2] pro-

posed MPEG-based video coding scheme with SNR and temporal
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scalability. A different class of scalable video coding algorithms
has been introduced for video streaming applications, based on a

3-D wavelet coding approach. These methods generally use tem-

poral filtering in the direction of motion [3, 4, 5, 6], but interesting

results have also been shown in the absence of any motion com-
pensation as in SPIHT-3D [7], which may provide also additional

adaptivity and error resilience.

In this paper, a new highly scalable video coding scheme is
proposed, based on a three-dimensional Matching Pursuit algo-

rithm (MP3D). The compression performance are shown to com-

pare favorably to SPIHT-3D and MPEG-FGS, especially at low

coding rates. Additionally, the stream generated by MP3D pro-
vides an increased flexibility in terms of adaptivity. The paper is

organized as follows. In Section 2, the matching pursuit video

coder is presented, and the dictionary construction is detailed. In

Section 3, the scalability features of MP3D (i.e., SNR, spatial and
temporal scalability), are presented. The performance of MP3D

are then discussed in Section 4, and Section 5 finally concludes

the paper.

2. MP3D: MATCHING PURSUIT VIDEO CODER

2.1. Sparse Representations

Most acclaimed technical solutions to both image and video com-

pression, namely the JPEG2000 and MPEGx/H.26x families of

standards, rely heavily on transform coding. Moving to the trans-

form domain is usually performed in order to obtain decorrelated
sets of coefficients on which scalar quantization and entropy cod-

ing is performed, and this drives the choice of the transform. Most

techniques use two well controlled orthonormal basis (ONB): DCT

and wavelets. Performing the transform by means of an ONB al-
lows the use of well studied data compression results, and in both

cases fast algorithms help keeping a low complexity implementa-

tion. Unfortunately, restricting a representation to an ONB fixes a

very rigid structure on the components of the signals that are rep-
resented and sometimes dramatically damages the coherence and

quality of important visual primitives : This results in annoying

artifacts at low bit rates on textures and edges.

To cope with these problems, an interesting line of research

consists in representing the image with a transform whose building

blocks match important signal structures. Unfortunately the price

to pay for such a freedom is that no genuine ONB can be used and
a new coding paradigm has to be adopted. In the following, we

basically try to derive a coding scheme that preserves pre-defined

structures in a sequence of frames. More specifically we consider

such a sequence as a 3-D space-time signal � � � � 
 �  � and try to

III - 1330-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



efficiently encode coherent spatio-temporal structures.

The chosen approach relies on expanding the signal as a lin-

ear superposition of generalized waveforms tuned to match the re-
quested structures and selected among a vast library :

� � � � �� 	

 � �

	 �
� � � (1)

The only constraint on the collection � � �
�

� � � � � ! is that it
is dense in the space of finite energy signals. In the following we
refer to

�
� as an atom and to � as a dictionary. The set � in (1)

can be chosen as an anonymous set of labels but may also carry

important information about the atoms, for example space and fre-

quency localization, as will be the case in this paper. Of course we
also wish that the necessary parameters in this expansion, namely

the set of coefficients �
	
and indexes �

	
yield good compression

performances and this leads us to a generic requirement about (1),

namely that this expansion is sparse enough.
Without additional constraints on � , and in particular if it is

not an ONB, there is generally not a unique sparse expansion. One

possible solution can be to look for the sparsest possible exact ex-

pansion, that is minimizing the number of coefficients in (1). This

unfortunately leads to a daunting combinatorial optimization prob-
lem that is NP hard. A close solution may be provided by relaxing

this problem and trying to minimize the " �
norm of the coeffi-

cients which leads to the Basis Pursuit algorithm deeply studied

by Donoho et al. [8]. Interestingly this algorithm sometimes leads
to the optimal sparsest solution of (1) with particular dictionar-

ies [9, 10, 11].

Alternatively, the Matching Pursuit (MP) algorithm [12] pro-

vides a interesting generic solution to (1) by iteratively decompos-
ing the signal using a greedy strategy. Starting with # � � � , the% & ( iteration reads

# ) � , # ) �
�

� / 0
�

� / 2 # ) 4 � � (2)

where the atom

�
� / is the one having maximum correlation with# ) : �

� / � 6 8 : < 6 >? A , # ) �
�

� 0 A � (3)

After B steps MP yields a sparse approximation :
� � � � �� 	


 � , #
	

�
�

� � 0
�

� � 2 # � � (4)

where # � is a small residual error. Matching Pursuit converges,
that is F # � F H J when B tends to infinity and converges even
exponentially in finite dimension [12]:

F # � F K L M N O Q K T �
(5)

where Q is constant that solely depends on � and is getting close
to 1 when the redundancy increases. Recently more constructive

results have been obtained concerning the approximation proper-
ties of greedy algorithms [11] but their description is beyond the

scope of this paper. As already shown in [13] MP is intrinsically

well suited for compression of visual information because it eas-

ily yields scalable streams by simply truncating (4). Moreover a
good approximation is obtained with few well chosen components,

mostly because MP will first pick the most prominent signal struc-

tures in the dictionary. This property makes it particularly useful

at very low bit rates.

2.2. Spatio-temporal dictionary

In order to capture the video signal information, the atoms have to
be able to efficiently represent both the spatial image content, and

the temporal information within groups of frames. In the same

time, the dictionary has also to be designed to permit multireso-

lution decoding, and provide spatial and temporal scalability with
minimal effort. In summary, an effective dictionary should mainly

offer the following properties [14]:U Multiresolution,U Localization: the atoms are localized in space and frequency,U Directionality: the atoms can be oriented along image sin-
gularities,U Anisotropy: the atoms can be deformed to match signal
components.

Based on these requirements, the proposed encoder uses the

following dictionary. Firstly, the spatial part of the atoms are gen-
erated from twomother functions, that satisfy the localization prop-
erty: a 2-D Gaussian function

� � M V � X T � �Z [ \ � ] _ ` 4 a ` b
and a

wavelet-like function where one of the direction corresponds to thec ) e
derivative

�
K M V � X T � KZ g [ M h V K O c T \ � ] _ ` 4 a ` b

of a gaussian

function. The 2-D Gaussian is used to capture the low frequency

spatial features, whereas clearly the wavelet-like function, besides

nice localization properties and a small number of oscillations, is

able to capture image singularities like edges and contours. This
function has been shown to yield good approximation performance

in natural image representation [15]. The overcomplete spatial dic-

tionary is then generated by shifting, orienting, and scaling the two

spatial mother atoms, as follows :U Shift: k ] _ l n a l b �
�

�
M M V O V � T � M X O X � T TU Orientation: k q

�
K �

�
K M r q M V � X T TU Scaling: k u

� � �
� � M _ u � au T , k ] u v n u ` b �

K �
�

K M _u v � au ` T
Clearly, the number of translation, rotation and scaling has to

be limited to avoid a prohibitive dictionary size, and thus limit the

complexity of the search algorithm. In the current implementa-
tion, M V � � X � T sweeps the whole image, and w �

	 [� z where { �J � � � � � N } . The scaling factors finally are distributed on a logarith-
mic scale, as ~ � c

	
, with { � J � � � � � � � � : M

	
� u � � � � � �z T � .

Secondly, the temporal part of the dictionary is built on Q -
spline Q ) M � T functions, in order to efficiently capture motion in-
formation, and in the same time satisfy the multiresolution and
localization properties. The order of Q ) M � T has to be larger thanc
, to have a smooth transition and benefit from a limited support.

Experiments have shown that % � � already offers good perfor-
mance for group of pictures of a commonly accepted size of 16
frames. The temporal part of the dictionary is finally generated

by shifting and scaling the Q -spline � & l n � Q g � Q g M ] & � & l b� T , simi-
larly to the construction of the spatial part of the dictionary. In the

current implementation, translation covers the complete group of
frames (i.e., � � � � J � � � � � � 	

� � � ), and the scaling follows a loga-
rithmic distribution, � � c

	
with { � J � � � � � � � � : M � � � � 	

� � T � . It
is noteworthy to notice that in the temporal scale � � c

	
, { refers

to the number of frames that are filtered in the sequence. For ex-
ample, { � J means that only N frame is considered, what happens
in case of abrupt motion or scene change. It can be noted also that

the present implementation does not contain any rotation of the

temporal functions, this part is currently under study. Finally, the
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video dictionary is built on spatio-temporal separable functions,

which combine the spatial and temporal sub-dictionaries to yield

three dimensional atoms able to match the video signal structures.

2.3. MP3D encoder

Matching Pursuit
Decomposition

Video sequence GOP 16

Find the best atom
in dictionary

Split the selected 
atoms into N sets

In each set:
Sort the atoms spatially
Quantiz e coefficients

Arithmetic coding
(bitstream)

Fig. 1. Block diagram of the MP3D encoder

The complete MP3D encoder can be represented with the block
diagram in Figure 1. The original video sequence is first seg-

mented in group of 16 frames (GOP), whose length has been cho-

sen as a good trade-off between encoding complexity, compression

efficiency and decoding delay. The Matching Pursuit encoder it-
eratively selects the 3-D atoms

�
� � � � � � �  from the dictionary that

best match the residual GOP signal, in terms of the energy of the

correlation coefficients, following (3). This iterative process con-

tinues until a stopping criteria is reached. Figure 2 (a) shows how
the PSNR of the coded video sequence (foreman qcif) behaves in
terms of iteration number � . Clearly, the rate of increase is very
fast at the beginning, due to the nature of MP. The coefficients

�
�

� � �
�

�
�

� � � indeed decay exponentially with the iteration num-
ber � as shown in Figure 2 (b).
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Fig. 2. PSNR and atom coefficient evolution vs iteration number

A classical implementation of the Matching Pursuit search

would result in a quite high heavy computation process, since the
encoder needs to browse the dictionary and perform the inner prod-

uct between each element and the residual signal for every MP it-

eration � . The current implementation of the MP3D uses a reduced
complexity scheme, based on a Fast Fourier Transform. Since the
dictionary is shift-invariant, the inner products are calculated in

Fourier in  � "  � � $ � " � � � � "  where " is the size of the signal.
Coefficients and atoms are then encoded in order to provide a

flexible bitstream, but still with a high compression ratio. The em-

bedded coding is achieved through the set-partitioned position map
algorithm (SPPM), which is derived from the bit plane encoding.

The atoms are first split into % sets according to their energy, where
each set contains & ( contiguous atoms, and then spatially sorted to
form the index-map. The first sets contain fewer elements than the
other sets, but have larger global energies due to the properties of

the MP decomposition (see Figure 2 (b)). The number of sets and

their size is determined by the energy of the coefficients. The dis-

tribution of the coefficients in each set is found to be Laplacian, so

uniform quantization is applied since it has been shown to be close

to optimal [16]. Finally, the index-map of each set and its quan-

tized coefficients are losslessly coded with an adaptive arithmetic
coding scheme.

The decoding process is very simple. It simply consists in
decoding the coefficients, and adding the 3-D atoms multiplied by

the corresponding coefficients to reconstruct the video signal.

3. SCALABILITY PROPERTIES

Due to the multiresolution structure of the dictionary, MP3D streams

are highly scalable in terms of spatial or temporal (i.e., frame rate)

resolution. The geometric properties of the dictionary ensures very

easy transcoding operations, such a single bitstream, can with no
effort be decoded at any spatial resolution (as long as the re-scaling

is isotropic) and various frame rate. For example, a coded video

signal ) of size * , . with a frame rate / can be spatially
transcoded into a video signal 0) of spatial resolution 1 * , 1 .
at the same frame rate as follows :

0) � 7 9 :; �
< > 1 �

�
0

�
� � � (6)

where �
�
are the atom coefficients and 0

�
� � corresponds to the atom�

� � after transcoding. Transcoding simply modifies the atom index� @ A � @ C � @ D � F A � F C � F D  which becomes � 1 @ A � 1 @ C � @ D � 1 F A � 1 F C � F D 
where I@ and IF respectively represents the spatio-temporal position
and scale of the atom

�
� � . Figure 3 illustrates an example of the

spatial transcoding of the Foreman sequence at 200 kbps, scaled
with a factor

:J .In addition to spatio-temporal scalability, MP3D intrinsically

provides SNR scalability thanks to the properties of the Matching
Pursuit algorithm. The energy of the coefficients is exponentially

decreasing along the iteration number. Therefore, simple trunca-

tion of the embedded bitstream produced by the proposed encoder

still ensures that the decoder receives most of the signal energy for
the available bandwidth.

(a) Original frame (b) Decoded frame.

(c) Scaled by 0.5

Fig. 3. The K L D frame in foreman decoded and transcoded
4. EXPERIMENTAL RESULTS

Performance of MP3D are now compared with state-of-the-art scal-

able video coding schemes, like MPEG-4 (FGS) and SPIHT-3D.

The rate-distortion characteristics are first compared to SPIHT-3D

for the video sequence foreman (qcif format), with GOP size K N .
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As shown in Figure 4, the PSNR quality is better for MP3D than

for SPIHT-3D at low bit rates � � � � � � � � kbps. Note that both
schemes offer nice scalability properties, with MP3D being more
flexible however. When compared against MPEG-4 with spatial

scalability, MP3D outperforms the multi-layer scheme by almost

one dB at low bit rates. Finally, Figure 5 proposes a comparison

with the state-of-the-art MPEG-4 with FGS scalability having the
base layer coded at different bit rates (46, 60, 70) kbps for the

same video sequence. When used with a base layer at � 
 kbps for
increased SNR scalability, MPEG-FGS loses up to

� � 
 dB against
MP3D at higher bit rates

� � � kbps. When the base layer is coded
at 
 � kbps, FGS is slightly better than MP3D at low bit rates, but
it loses a lot of flexibility in terms of scalability, since it obviously

cannot serve bit rates lower than the base layer. It also loses its

quality advantage at higher bit rates. Finally, visual comparisons
also favors MP3D at low bit rates, since it provides less annoy-

ing artifacts than ringing in wavelet-based coding, or blocking in

DCT-based coding.
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Fig. 4. R-D comparison between MP3D, SPIHT-3D and MPEG
with S-scalability for qcif foreman 30fps
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Fig. 5. R-D comparison between MP3D and MPEG-FGS for qcif
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5. CONCLUSIONS

This paper has presented a novel video coding scheme based on a

Matching Pursuit algorithm. It has been shown to provide a highly

flexible scalable bitstream, as a response by an ever increasing de-
mand for adaptive coding structures. In the same time, it still fa-

vorably compares with state-of-the-art scalable coders in terms of

rate-distortion characteristics at low bit rates. Even if the current

implementation can still be greatly improved, the MP3D structure
thus represents a promising alternative for scalable video coding

and streaming applications. Finally, including orientation in the

temporal direction to capture motion information is currently un-

der progress.
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