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ABSTRACT

The purpose of this paper is to present a concise overview
of hyperspectral signal models and the target detection algo-
rithms resulting from their adoption. We focus on detection
algorithms derived using established statistical techniques
and whose performance is predictable under reasonable as-
sumptions about hyperspectral imaging data. We show that
the family of elliptically contoured distributions (ECDs), in
general, and the t-ECD, in particular, provide a more accu-
rate model for hyperspectral backgrounds, compared to the
widely used multivariate normal distribution. Since many
detection algorithms derived for normal distributions apply
to ECDs as well, the ECD models provide a better framework
for modeling and analyzing hyperspectral imaging data.

1. INTRODUCTION

The detection of materials and objects using remotely sensed
spectral information has many military and civilian applica-
tions. Hyperspectral imaging sensors measure the radiance
for every pixel at a large number (K) of narrow spectral
bands. The obtained measurements, arranged as a column
vector x, are known as the radiance spectrum of the pixel. In
the reflective part of the electromagnetic spectrum (0.4µm-
2.5µm), the spectral information characterizing a material
is the reflectance spectrum, defined as the ratio between re-
flected and incident radiation as a function of wavelength.

We focus on detection algorithms that exploit spectral
information, only. Target detection algorithms for hyper-
spectral imaging data, can be grouped into two types: Spec-
tral matching algorithms, which require spectral information
about the targets of interest, and anomaly detection algo-
rithms which the do not require knowledge of the spectral
signatures of the targets of interest.

The task of a target detection algorithm is to decide, by
means of a statistical hypothesis test, whether a target of in-
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terest is present or not present in a pixel-under-test (PUT)
with observed spectrum x. We typically use a binary hy-
pothesis test to choose between the following competing
null and alternative hypotheses: H0: Target absent and H1:
Target present. According to the Neyman-Pearson (NP) cri-
terion, the optimum decision strategy (maximize the prob-
ability of detection PDwhile keep the probability of false
alarm PFAunder a certain value) is given by the likelihood

ratio test (LRT): �(x) = f1(x|H1)
f0(x|H0)

H1
≷
H0

η, where f0(x|H0) and

f1(x|H1) are the probability density functions (pdfs) of the
observed data vector under the two hypotheses. The deci-
sion threshold η is set to yield the desired probability of false
alarm PFA[1]. The main objective of this paper is to provide
a concise review of some widely used HSI signal models and
the resulting detection algorithms. This discussion expands
and complements the work presented in [2, 3].

2. HYPERSPECTRAL SIGNAL MODELS

Under the H0 hypothesis, the PUT consists only of back-
ground. Under the H1 hypothesis, depended on the relative
sizes of the target and the ground resolution cell, the PUT
may consist of only target or target and background. When
the PUT is filled with the target, we talk about resolved or
full-pixel targets. When only part of the pixel is filled with
the target, we talk about unresolved or sub-pixel targets. In
this case, essentially, the target replaces part of the back-
ground in the PUT. If we denote by s the spectrum of the
target, and by v the spectrum of the background, and by
α ≥ 0 the fraction of the PUT area filled by the target, the
observed spectrum is

x = αs + (1 − α)v (1)

which is known as the replacement signal model for sub-
pixel targets. The replacement model can be approximated
by a linear signal model if α � 1 (⇒ x ≈ αs + v) or α ≈ 1
(⇒ x ≈ s + (1 − α)v). Although the replacement model
makes better sense for sub-pixel targets, for mathematical
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simplicity we use the following linear model

x = αs + βv (2)

where α and β can take any values, positive or negative.

2.1. Background Modeling

The most widely used background model assumes that v is a
random vector with a multivariate normal (or Gaussian) pdf
given by

f (v) = 1

(2π)K/2|�|1/2 exp

[
−1

2
(v − µ)T �−1(v − µ)

]

(3)

where µ = E(v) is the mean vector, � = E[(v−µ)(v−µ)T ]
is the covariance matrix, and | | denotes matrix determi-
nant. In shorthand notation v ∼ N(µ, �) or equivalently
g(v; µ, �). The quadratic expression

�2(v, µ; �) = (v − µ)T �−1(v − µ) (4)

is a widely used statistical distance measure, known as the
Mahalanobis distance. It can be shown that if v ∼ N(µ, �),
then �2 ∼ χ2

K (chi-squared distribution with K degrees of
freedom). A more accurate statistical model for hyperspec-
tral backgrounds [4, 5], is the multivariate elliptically con-
toured (EC) t-distribution given by

tK(v; µ, C, M) = �[(K + M)/2]
�(M/2)(MK)K/2|C|1/2

×
[

1 + 1

M
(v − µ)T C−1(v − µ)

]− K+M
2

(5)

where M is the number of degrees of freedom, C = (1 −
2/M)� is the scale matrix, and �( ) denotes the gamma
function. The Mahalanobis distance is distributed as

1

K
(v − µ)T C−1(v − µ) ∼ FK,M (6)

where FK,M is the F-distribution with K and M degrees of
freedom. The integer M controls the tails of the distribution:
M = 1 leads to the multivariate Cauchy distribution (heavier
tails), whereas as M → ∞ the EC t-distribution approaches
the multivariate normal distribution (lighter tails).

The empirical distribution of the Mahalanobis distance
of a hyperspectral data cube, can be used to identify its
joint spectral distribution by comparing to the theoretical
chi-squared and F-distributions corresponding to the multi-
variate normal and t-distributions. In examining the statisti-
cal properties of the data, several groupings, or classes, were
considered. Three regions are identified in the white boxes in
Figure 1 describing three classes that were selected by their

• HYDICE (HYperspectral Digital Imagery
Collection Experiment)

– Airborne sensor

• 210 spectral bands
– 399-2501 nm

– Channel widths ~ 3 – 11 nm

– Spatial resolution, 1m x 1 m
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Fig. 1. Division of data cube into rectangular blocks to re-
duce spatial inhomogeneity.
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Fig. 2. Modelling the distribution of the Mahalanobis dis-
tance for the HSI data blocks shown in Figure 1.

spatial proximity. In the lower right is a "Grass" region, the
middle top is a "Tree" region, and on the left is a "mixed"
region. These regions define the pixels selected for three of
the classes considered. Also considered were two classes
resulting from a supervised classification process performed
to isolate spectrally similar (not necessarily spatially adja-
cent) pixels. To reduce the effects of spatial inhomogeneity,
we divide the data cube into rectangular blocks as shown
in Figure 1. The distribution of the Mahalanobis distance
is shown in Figure 2 for all blocks plus the three spatially
determined classes.

Another way to reduce spatial inhomogeneity is to model
each class obtained by supervised or unsupervised classifi-
cation separately. To this end, we use the classes shown in
Figure 3, which have been derived by elaborate processing
techniques by a group at the Remote Sensing Laboratory,
Purdue University. The distribution of the Mahalanobis dis-
tance for the five most populated classes is shown in Figure
4. The results in Figures 2 and 4 indicate that the EC t-
distribution provides a promising model for HSI data. We
note that the t-distribution tends to the normal distribution
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Classification Result• Supervised classification
resulted in 12 background
classes

Class #Samples
Grass 1 57,274
Grass 2 96,359
Grass 3 59,438
Tree 1 16,732
Tree 2 16,668
Bushes 1,816
Shaded Trees 25,496
Shaded Road 7,448
Road  1 575
Road  2 8,049
Road  3 4,066
Road  4 5,648

• Classes were screened to
be unimodal

• Fine class distinctions
apparent

Natural Color

Unlabelled
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Grass 2

Grass 3

Tree 1

Tree 2

Bushes

Shaded Trees

Shaded Road

Road 1

Road 2
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Road 4

Fig. 3. Classes, classification results, and natural color im-
age for the analyzed HYDICE data cube.
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Fig. 4. Modelling the distribution of the Mahalanobis dis-
tance of the HSI data classes shown in Figure 3.

when the number of degrees of freedom increases.

2.2. Target Modeling

In contrast to the background, the target spectrum s is usually
model by a multivariate normal distribution s ∼ N(µs , �s).
Because the tails of the distribution do not significantly affect
the probability of detection, there is no need to use the more
complicated ECD models. It can be shown that this random
signal model is equivalent to the so-called Gaussian linear
model s = Hθ , θ ∼ N(µθ , σ

2
θ IP ), where H (K × P) is

the mode matrix and the elements of θ(P × 1) are the mode
weights (P ≤ K). According to this model, the target s lies
in the linear subspace spanned by the columns of H , but its
location is unknown because θ is unknown. The spectrum
vector can be placed randomly or deterministically in an
unknown location of a known subspace. Most detection al-
gorithms have been derived using a deterministic placement.
However, a remarkable result developed in [6] shows that the
subspace detectors for known covariance matrix are GLRT
for both deterministic and stochastic subspace signals.

3. MATERIAL DETECTION ALGORITHMS

Figure 5 shows a taxonomy of a variety of algorithms for hy-
perspectral target detection. A detailed discussion of these
algorithms from a hyperspectral image processing perspec-
tive is provided in [2, 3], whereas a theoretical analysis of
the subspace detection algorithms is given in [7]. Figures 6
and 7 illustrate the performance of different detection algo-
rithms for three materials with different spectral signatures.
The lack of a large number of target pixels makes difficult
the generation of reliable receiver operating characteristic
(ROC) curves; more details can be found in [3].
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Fig. 6. Summary of detection performance of the various de-
tectors for three different target signatures. Each bar shows
the number of detected targets for a 10−4 probability of false
alarm.
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Fig. 7. Summary of detection performance of the various de-
tectors for three different target signatures. Each bar shows
the probability of false alarm for a threshold that assures the
detection of all full-pixel targets.
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Fig. 5. Taxonomy of hyperspectral imaging target detection algorithms.

4. CONCLUSIONS

In this paper, we presented a unified view of hyperspectral
signal models and resulting detection algorithms from a sig-
nal processing perspective. An important property of some
of the discussed algorithms (GLRT, ACE, AMF) is that they
preserve their structure, which was obtained for normally
distributed backgrounds, for the more general class of ECDs
[8]. Although the theoretical properties and performance for
the additive signal model have been extensively studied, a
similar investigation for the replacement model is not avail-
able.
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