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ABSTRACT

Computationally efficient implementations of the Kalman Bucy

filter (KBf) for data assimilation are presented. We apply our algo-

rithms to assimilate satellite altimetry data into the Navy Layered
Ocean Model (NLOM). Compared to direct KBf, our implementa-

tions provide computational savings of up to two orders of magni-

tude of the linear dimension of the ocean field. Results from a 1/4◦

equatorial channel simulation of the Pacific ocean are included.

1. INTRODUCTION

In physical oceanography, combining data with nonlinear state
models based on the primitive Navier Stokes equation is referred

to as data assimilation [1, 2]. The objective is to estimate the

state of the ocean circulation fields for example the sea surface

height (SSH) and the ocean velocity components. The large di-
mensions and nonlinearity of the state models preclude the appli-

cation of sophisticated signal processing algorithms like the Kalman

Bucy filter (KBf) from data assimilation.

The paper presents practical implementations of the KBf, re-
ferred to as the local KBf [3], for estimating nonlinear ocean cir-

culation fields. Unlike [3] where dynamical models arising from

discretization of linear partial differential equations (pde) are used,

we consider the more realistic Navy layered ocean model (NLOM)
[4]. Another difference arises due to the difference in the struc-

ture of the state matrices. While the state matrices in [3] are block

banded, the state matrices in the NLOM are full matrices. How-

ever, the blocks that constitute the state matrices are subblock ban-
ded so the local KBf is applied at the subblock level to the NLOM.

The paper is organized as follows. Section 2 describes the dy-

namical models and introduces the notation. Section 3 presents the

data assimilation algorithm based on the KBf. Twin experiments
are included in section 4 while section 5 concludes the paper.

2. DYNAMICAL MODELS

For compactness, the primitive pde’s used to numerically compute

the ocean circulation fields in the NLOM are expressed as

∂ψ

∂t
= Dψ + F , D =

∑
n1,n2,n3

(
∂

∂θ

∂

∂φ
an1n2n3(θ, φ)

)
(1)

where ψ represents multiple (q) fields like sea surface height (SSH)

h, and the latitudinal and longitudinal velocity components (u, v).

The operator D is the pde operator, θ and φ are the latitudinal and

longitudinal coordinates, and F incorporates wind forcings.

In a numerical simulation, the ocean domain constrained by the
latitudinal and longitudinal boundaries is discretized into an (I ×
J) grid with L layers. A set of finite difference equations obtained

by discretizing (1) computes the ocean circulation fields (h, u, v)

for each layer. In our derivations, a row of the discretized field in
layer � is first mapped into a (J × 1) random vector and these are

stacked one on the top of the other to form a (qIJ ×1) field vector

Ψ(�) =

[
hT

1 , uT
1 , vT

1︸ ︷︷ ︸
Ψ

(�)
1

, hT
2 , uT

2 , vT
2︸ ︷︷ ︸

Ψ
(�)
2

, . . . , hT
I , uT

I , vT
I︸ ︷︷ ︸

Ψ
(�)
I

]T

, where

hi = [hi1, . . . , hiJ ]T, ui = [ui1, . . . , uiJ ]T, vi = [vi1, . . . , viJ ]T,

for 1 ≤ i ≤ I and (1 ≤ � ≤ L). The state vector Ψ consists

of field vectors Ψ(�) for each layer stacked together in the order

of the depth. Additional terms that provide coupling between the
vertical layers are also included in the dynamical model of (1).

The covariance matrix P of the state vector Ψ is expressed in

terms of its constituent blocks as

P =
{
P (�1�2)

}
with P (�1�2) =

⎡⎢⎣P
(�1�2)
11 . P

(�1�2)
1I

.
. . . .

P
(�1�2)
I1 . P

(�1�2)
II

⎤⎥⎦ (2)

where P (�1�2) is a (qIJ × qIJ) block that denotes the covariance

between the lexicographic ordered vectors Ψ(�1) and Ψ(�2) for lay-

ers �1 and �2 of the ocean field. The covariance blocks P (�1�2) are

further expressed in terms of (qJ × qJ) subblocks P
(�1�2)
ij repre-

senting the covariance between the q ocean fields of row i in layer
�1 and the corresponding fields of row j in layer �2. Our data as-

similation algorithm is expressed in terms of the (qJ × qJ) blocks

P
(�1�2)
ij for (1 ≤ i, j ≤ I) and (1 ≤ �1, �2 ≤ L).

Satellite Measurements: The satellite tracks are curved, so al-
timetry data is available on a few points along N adjacent rows,

m, . . . , p, in the top most layer (� = 1). The observation model is⎡⎢⎣Y(1)
m (k+1)

...

Y(1)
p (k+1)

⎤⎥⎦
︸ ︷︷ ︸

Y(k+1)

=
[

Θ(k+1) 0 . 0
]︸ ︷︷ ︸

H(k+1)

Ψ(k+1) + ξ (3)

with Θ(k + 1) =

[
. 0 θm 0 . 0 0 0 .
. . . . . . . . .
. 0 0 0 . 0 θp 0 .

]
.(4)
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For a total of L-vertical layers, the observation matrix H(k + 1)
is of dimensions (qNJ × qLIJ) and is highly sparse. The con-

stituent blocks θi’s of Θ are also sparse since the satellite provides
data only on the SSH, h. The velocity components (u, v) are not

observed. The variable ξ in (3) represents the measurement noise,

assumed Gaussian with covariance R, and k is the time index.

3. EXTENDED KBF

To apply the KBf for data assimilation, we propose the extended

filtering approach where a real-time linear approximation of the
nonlinear dynamic model (1) is used as the state equation in the

KBf. The linearized state model for the extended KBf is obtained

by approximating (1) with the shallow water model

∂h(�)

∂t
+

H(�)

a cos θ

[
∂u(�)

∂φ
+

∂(v(�) cos θ)

∂θ

]
= 0 (5)

∂u(�)

∂t
− 2Ωv(�)sin θ +

L∑
τ=1

h(�)G(�τ)

a cos θ

∂(h(τ)−H(τ))

∂φ
= Fφ(6)

∂v(�)

∂t
+ 2Ωu(�)sin θ +

L∑
τ=1

h(�)G(�τ)

a

∂(h(τ)−H(τ))

∂θ
= Fθ (7)

where H(�) denotes the thickness of layer �, Ω is the Coriolis pa-
rameter, (Fφ, Fθ) are the longitudinal and latitudinal components

of the forcing term F , and G(�τ) is the reduced gravity parameter

G(�τ) =

{
g, τ ≤ �

g(1 − ρ(τ)−ρ(�)

ρ(0) ), τ > l
(8)

with ρ(�) the �’th layer density and ρ(0) the average background

density. Equations (5)-(7) are discretized with the staggered C-

grid Leap Frog finite difference scheme, followed by a real-time

Taylor approximation of the nonlinear terms. The state equation is

Ψ(k + 1) = A(k)Ψ(k) + C(k)W (k). (9)

where the state matrices A and C are full matrices that are parti-

tioned in terms of the time varying blocks, A = {A(�1�2)} and

C = {C(�1�2)}, for (1 ≤ �1, �2 ≤ L). The blocks A(�1�2)

and C(�1�2) are of the same dimensions as the covariance blocks

P (�1�2) but are highly structured with A(�1�2) being M1-block

banded and B(�1�2) being M2-block banded. This block banded

structure arises from the local interactions of the fields resulting
from the discretization of the pde’s (5)-(7). The term W (k) incor-

porates the wind forcings and has a covariance Q.

Data Assimilation Algorithm: The linear dimension of the field

Ψ in a meaningful ocean circulation simulation is of the order of
106 to 109 elements. In such applications, implementation of the

direct KBf requires storage and manipulation of covariance matri-

ces of order 106 to 109. The inversion or multiplication of such

matrices therefore requires up to 1027 flops, which is computa-
tionally not feasible. Based on theorem 1 [5], we derive a near-

optimal implementation of the KBf in which a subset of subblocks

P
(�1�2)
ij of block P (�1�2) in P are updated during each iteration.

Theorem 1 is explained next.

Theorem 1: Given blocks {P (�1�2)
ij } on the first M -subblock di-

agonals of P (�1�2) = (B(�1�2))−1, B(�1�2) being M -subblock

banded, the subblocks outside the M -subblock diagonals in P (�1�2)

are expressed as

P
(�1�2)
ij =

[
P

(�1�2)
ii+1 . . . P

(�1�2)
ii+M

]
(10)⎡⎢⎣ P

(�1�2)
i+1i+1 . P

(�1�2)
i+1i+M

.
. . . .

P
(�1�2)
i+Mi+1 . P

(�1�2)
i+Mi+M

⎤⎥⎦
−1⎡⎢⎣ P

(�1�2)
i+1j

...

P
(�1�2)
i+Mj

⎤⎥⎦
for 1 ≤ i < (I − M) and (i + M) < j ≤ I .

In the local KBf, we impose a M -subblock banded approximation

on the inverse of block P (�1�2) in the covariance matrix P . Only

subblocks P
(�1�2)
ij within the first M block diagonals of P (�1�2)

are updated. We refer to these subblocks as the significant block.

Any subblocks other than the significant blocks, if required, is

computed using theorem 1. Below we briefly outline the data as-

similation algorithm.

Local KBf: Initial conditions: Ψ̂(0|0), P(0|0), Q, R at k = 0.

Step 1: Update the field Ψ̂(k+1|k) using the nonlinear NLOM, (1).

Step 2: In terms of the constituent blocks of A = {A(�1�2)},

C = {C(�1�2)}, P = {P (�1�2)}, and Q = {Q(�1�2)}, the error

covariance matrix is updated as

P (�1�2)(k + 1|k) = (11)

L∑
τ2=1

(
L∑

τ1=1

A(�1τ1)(k)P (τ1τ2)(k|k)

)(
A(�2τ2)(k)

)T

+

L∑
τ2=1

(
L∑

τ1=1

C(�1τ1)(k)Q(τ1τ2)(k)

)(
C(�2τ2)(k)

)T

,

for (1 ≤ �1, �2 ≤ L). Eq. (11) includes sum of several prod-

uct terms of the form, A(∗∗)P (∗∗)(k|k)(A(∗∗))T
. In order to ex-

pand (11) in terms of subblocks P
(�1�2)
ij (k + 1|k), each product

term A(∗∗)P (∗∗)(k|k)(A(∗∗))T is expressed in terms of the con-

stituent subblocks as[
A

(∗∗)
1 P

(∗∗)
i−1j−1 + A

(∗∗)
2 P

(∗∗)
ij−1 + A

(∗∗)
3 P

(∗∗)
i+1j−1

]
(A

(∗∗)
1 )T

+
[
A

(∗∗)
1 P

(∗∗)
i−1j + A

(∗∗)
2 P

(∗∗)
ij + A

(∗∗)
3 P

(∗∗)
i+1j

]
(A

(∗∗)
2 )T

(12)

+
[
A

(∗∗)
1 P

(∗∗)
i−1j+1 + A

(∗∗)
2 P

(∗∗)
ij+1 + A

(∗∗)
3 P

(∗∗)
i+1j+1

]
(A

(∗∗)
3 )T

where the subblocks P
(∗∗)
∗∗ are computed at (k|k); the time indexes

are omitted due to space constraints. In deriving (12), we have

assumed that the block A(�1�2) is tridiagonal subblock banded1 ,

(M1 = 1), with subblocks A
(�1�2)
1 , A

(�1�2)
2 , and A

(�1�2)
3 on its

lower, main, and upper subblock diagonals. The M -subblock banded

approximation on block P (�1�2)(k + 1|k) implies that we update

only the main and the first M upper subblock diagonals in each

such block. In other words, we compute subblocks P
(�1�2)
ij (k +

1|k), |j − i| ≤ M , in P (�1�2) using (11)-(12). From (12), an

update P
(�1�2)
ij (k + 1|k) requires subblocks

P
(�1�2)
ij (k|k), for |j − i| ≤ (M + 2) (13)

1The discussion presented here is generalizable to the M1-subblock
banded case for the state matrix A.
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from the last iteration of the KBf. Of the required subblocks P
(�1�2)
ij

at (k|k) in (13), the subblocks on the first M subblock diagonals

are obtained from the previous iteration of the KBf. The remain-
ing subblocks on diagonals (M + 1) and (M + 2) are computed

from the first M -subblock diagonals using theorem 1. A similar

procedure is used to approximate Q(�1�2).

Step 3: Compute the Kalman gain, which in terms of blocks is

K(�)(k + 1) = P (�1)(k + 1|k) ΘT (k + 1)· (14)

[Θ(k + 1)P (11)(k + 1|k)ΘT (k + 1) + R(11)(k + 1)]−1

where K(�) is the (qIJ × qNJ) Kalman gain for layer �, (1 ≤
� ≤ L). At the subblock level, (14) is

K
(�)
i (k + 1) =

[
P

(�1)
1m θT

m . . . P
(�1)
1p θT

p

]
· (15)⎡⎢⎣ (θmP

(11)
mm θT

m + R
(11)
mm) . θmP

(11)
mp θT

p

.
. . . .

θpP
(11)
pm θT

m . (θpP
(11)
pp θT

p + R
(11)
mm)

⎤⎥⎦
where K

(�)
i (k + 1) is a (qJ × qNJ) subblock that represents the

Kalman gain for row i of layer �, (1 ≤ i ≤ I) and (1 ≤ � ≤ L).

To update the Kalman gain K
(�)
i (k + 1) using (15), only a few of

the required subblocks P
(�1�2)
ij lie outside the M -subblock diag-

onals in block P (�1�2). These are computed from the subblocks

within the M -subblock diagonal of P (�1�2) using theorem 1.

Step 4: Compute the predicted estimate from the measurements.
At the block level,

Ψ̂(�)(k + 1|k + 1) = Ψ̂(�)(k + 1|k) (16)

+K(�)(k + 1)
[
Y(1)(k + 1) − Θ(k + 1)Ψ̂(1)

m (k + 1|k)
]

,

for (1 ≤ � ≤ L). Expanding further to the subblock level gives

Ψ̂
(�)
i (k + 1|k + 1) = Ψ̂

(�)
i (k + 1|k) (17)

+K
(�)
i (k + 1) ·

⎡⎢⎣ Y(1)
m (k + 1) − θmΨ̂

(1)
m (k + 1|k)

...

Y(1)
p (k + 1) − θpΨ̂

(1)
p (k + 1|k)

⎤⎥⎦ ,

for (1 ≤ i ≤ I) and (1 ≤ � ≤ L). The ocean field Ψ is updated
one row at a time.

Step 5: Compute the a posteriori covariance matrix using

P (�1�2)(k + 1|k + 1) = P (�1�2)(k + 1|k) (18)

−K(�1)(k + 1)Θ(k + 1)P (1�2)(k + 1|k)

for (1 ≤ �1, �2 ≤ L). Simplifying the above expression to the

subblock level gives

P
(�1�2)
ij (k + 1|k + 1) = P

(�1�2)
ij (k + 1|k) (19)

−K
(�1)
1 (k + 1)

⎡⎢⎣ θmP
(1�2)
mj (k + 1|k)

...

θpP
(1�2)
pj (k + 1|k)

⎤⎥⎦
for (1 ≤ i, j ≤ I), |j − i| ≤ M , and (1 ≤ �1, �2 ≤ L). Eq. (20)

is updated for P
(�1�2)
ij (k + 1|k + 1) that lie within the first M

subblock diagonals. Some subblocks P
(�1�2)
ij (k + 1|k) required

in (20) lie outside the first M subblock diagonals. These outside

subblocks are computed from the subblock lying within the M
subblock diagonals using theorem 1.

Step 6: Increment k by 1 and go back to step 1.

4. TWIN EXPERIMENT

To test our data assimilation scheme, an equatorial channel of the
Pacific ocean within the latitudes of ±20◦ and the longitudes of

306◦ to 374◦ is simulated. Twin experiments on a 1/4◦, 2 1
2

hydro-

dynamic NLOM with analytical winds (Fφ, Fθ) are performed.

The dimension of the state vector is roughly of O(106).
Deterministic setup: runs the NLOM with analytical winds to

propagate the deterministic components. Such theoretical estimates

are often used by oceanographers to model ocean circulation in

various regions of the ocean.
Real world setup: simulates the real conditions by extending the

deterministic setup with addition of White Gaussian noise with a

signal to noise ratio (SNR) of 12dB to the wind forcings (Fφ, Fθ).

The two simulations described above are run for a simulated pe-
riod of 6 months. The resulting fields (h, u, v) provide the initial

fields for our twin experiment.

Data Assimilation: The output of the real world setup is assim-

ilated as pseudo data, (3), into the deterministic setup to estimate
the results of the real world. Gaussian noise of 10dB is added to

the altimetry observations, h.

Results: In our data assimilation experiment, we use a pentadiag-

onal subblock approximation (M = 2) in the local KBf. Figs. 1,
2, and 3 show estimates of the sea surface height (SSH) for the top

layer from the three setups described earlier, at day 36 after three

satellite repeat cycles. Both mesh and contour plots are shown.

A visual comparison of the figures illustrates that the SSH image
associated with the satellite scanned sparse data (fig. 3) is a better

estimate of the actual ocean state condition (fig. 1), in our case, the

real world run, than the field predicted with no data assimilation

(fig. 2). The latter is a low pass version of the actual SSH. The data
assimilated SSH incorporates the finer details like the eddies as, for

example, the valleys and the peaks in fig. 1 are well reproduced in

fig. 3 but are smoothed out in fig. 2. In fig. 4, a quantitative com-

parison based on the mean square error (MSE) between different

frames of the SSH is performed. The relative MSE (RMSE) plotted
in fig. 4, is defined as the ratio of the MSE of the data assimilated

run to the MSE of the deterministic run. The region below ordinate

(y = 1) represents improvement made by the data assimilated run.

With time, the RMSE’s for both layers drop suggesting improve-
ments with the data assimilated prediction. The improvement is

higher, roughly 25% after 36 days, for the upper layer for which

altimetry data is available. No data is assimilated for layer 2, yet

we see an improvement of about 10%. Our KBf implementation
successfully correlates the two layers and projects the surface in-

formation into the lower layer.

5. SUMMARY

Assimilation of the altimetry data into the NLOM has been inves-
tigated. We use a local implementation of the KBf that couples

dynamic linearization with a M -block banded approximation to

the inverse of the error covariance matrix in the KBf. Results from

twin experiments on a 1/4◦, 2 1
2

layer hydrodynamic NLOM show
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Fig. 1. Mesh and contour plots of the sea surface height (SSH) in

meters for the top layer from the real world setup. The scale is

shown in colour on the right of the contour plot.
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Fig. 2. Mesh and contour plots of the SSH of the top layer from

the deterministic setup. The plots do not capture the finer details

like the eddies, the troughs, and the crests of fig. 1.

significant improvement in the reconstruction of the ocean circu-

lation fields. Although we assimilate altimetry data for only the
upper layer, reconstructions of both upper and lower layers are im-

proved. The KBf implementation projects the surface information

into the subsurface layer.
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