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ABSTRACT

In order to construct spatial activation plots from func-
tional magnetic resonance imaging (fMRI) data, a complex
spatio-temporal modeling problem must be solved. A cru-
cial part of this process is the estimation of the hemody-
namic response (HR) function, an impulse response relat-
ing the stimulus signal to the measured noisy response. The
estimation of the HR is complicated by the presence of low
frequency colored noise. The standard approach to mod-
eling the HR is to use simple parametric models, although
FIR models have been used. We offer two contributions
here. Firstly we pursue a nonparametric approach using
orthonormal causal Laguerre polynomials which have be-
come popular in the system identification literature It also
happens that the shape of the basis elements is similar to
that of a typical HR. We thus expect to achieve a compact
and so bias reduced and low noise representation of the HR.
Additionally we develop a procedure for providing confi-
dence intervals for the whole HR function. This feature is
completely lacking in all previous work.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) relates to
rapid high spatial and temporal resolution imaging of on-
going functional activity in contrast to static structure, by
means of nuclear magnetic resonance( NMR). In the con-
text of human brain mapping, it can be considered as a tech-
nology that enables creation of images, revealing localized
neural activity in human brains during sensory, motor and
cognitive activity. NMR facilitates detection of changes in
chemical composition or rate of blood flow as a result of
the local neural activity in response to controlled stimuli
resulting in digital image contrast. A brief readable survey
of Brain Mapping with fMRI is available in [1]. In a typical
fMRI experiment, a subject is presented with a stimulus or
cognitive task, in a periodic ”off-on” pattern, while images
of the brain are taken in rapid succession. A simple example

might be a flickering checkerboard visual stimulus which
is on for 10 s and off for 15s (i.e a square wave stimulus).
Such experiments are designed to determine and analyze re-
gions of functional specialization within the brain that are
related to stimulus presentation. The fMRI data available
for analysis is spatiotemporal. The data consists of several
two dimensional slices of sections of brain taken at differ-
ent angles, with each slice containing certain specific func-
tional areas. The 2 dimensional image data is recorded as
a function of time, with a sampling interval ranging from a
few hundreds of milliseconds to several seconds. The ob-
served data at each pixel of a given slice is a superposition
of 1) Blood Oxygenation level dependent (BOLD) hemody-
namic response (HR) � � � � brought about by some stimulus� � depending on the experiment, and the 2) brain noise 	 � � � .
The brain noise consists of hemodynamicfluctuations of un-
known origin, possibly related to background processes in
the brain as well as cardiac fluctuations. The broad statisti-
cal tasks to be carried out for analysis of the superimposed
time series at a pixel can be classified into four categories 1)
Modeling and estimating the HR [8], [9] that is assumed to
get convolved with the stimulus input, 2) Evaluate a model
selection criterion to compare the validity of the model with
other models [4], 3) Make an inference on the pixel as to
whether it was activated or not [9], [2], 4) Specify Confi-
dence Intervals (CI) on the estimated parameters or a func-
tion of estimated parameters such as HR. Tasks 1 and 3 are
quite standard while task 4 is not common. We propose new
approaches in carrying out tasks 1 and 4 in this paper, while
task 2 will be pursued elsewhere.

The paper is organized as follows. In section 2, we dis-
cuss the use of Laguerre polynomials in modeling the HR
and the method of estimation of unknown parameters for
each pixel of a slice. In section 3, we propose an approach
of making an inference based on constructing joint CIs on
the HR, while section 4 deals with results and section 5 with
conclusions. The idea of constructing joint CIs discussed in
section 3, can be extended to several other problems.
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2. MODELING AND PARAMETER ESTIMATION

The approach to time series decomposition at a pixel is built
on the work of several researchers [2] who used a convolu-
tion with a Poisson shaped impulse response to relate stim-
ulus to response, who showed that there is important low
frequency colored noise; [3] who investigated the validity
of linearity and convolution. The observed time series at a
pixel � as discussed in previous section can be represented
as � � � � � 	 � � � � � � � � � � � � � � � (1)

where 	 � � � � � are the DC levels and background drifts re-
spectively, while � � � � is the response to the input given by� � � � � � � � � �  ! � � � (2)

with � � � � � being the HR at pixel P, and the noise � � � � is
modeled as an AR(1) process in white Gaussian noise, which
is equivalent to ARMA(1,1) noise, [4]. Thus noise can be
expressed as � � � � � % � � � � & � � � (3)

where % � � � is backgroundwhite Gaussian noise of the scan-
ner with power ( *+ and & � � � is a temporally correlated noise
AR(1) given by, & � � � � , � & � - . � � � / � � � (4)

with / � � � being Gaussian with zero mean and variance ( *0 .
The true shape of HR is only known empirically [5].

Qualitatively it can be described as a localized hump shaped
causal function. The HR to the underlying neuronal activ-
ity and noise, will cause the HR to be a blurred, delayed
and noisy version of the stimulus. The accuracy of any
method proposed to detect activation will depend on the way
in which these factors are accounted for, and thus, an appro-
priate modeling would lead to better inference.

In the past, several approaches have been proposed to
model � � � � � . A Poisson form impulse was chosen in [2]. It
is a parsimonious choice because there is only one unknown
parameter involved. However since there is just one func-
tion involved, the shape becomes too constrained. In [5],
a weakly nonlinear model is used involving two weighted
convolution components parameterized by two time con-
stants. The two unknown time constants are chosen em-
pirically and the two weights computed by regression. FIR
modeling has been used by [8], which models the response
as the output of a FIR filter of a given order excited by the
stimulus input. Unfortunately a high order FIR filter is re-
quired to model the response [9]. It has been shown in [6]
that discrete Laguerre polynomials belonging to a class of
orthogonal exponentials have been quite effective in reduc-
ing the model order and provide a useful low order approx-
imation to time delay systems, if some a priori knowledge
of the time constants is available. Owing to the similarity

of shape of discrete Laguerre polynomials with the assessed
HR shape [8], which would possibly result in estimation of
fewer parameters and thus a reduction in bias and variance,
we propose the use of these polynomials in modeling the
HR. The HR at pixel � will then be described as

� � � � � � 34 5 6 . 7
5 � � 8 :5 � � � (5)

where 7
5 � � is the � � < pixel coefficient of the basis function8 :5 � � � which is the inverse = transform of > � < Laguerre poly-

nomials given by8 :5 � � � � = - . A B - .C D F B - . � B - . D FC D F B - . � 5 - . G � = - . I K8 :5 � B � L
(6)

Note that all the Laguerre polynomials of all orders and
hence all the basis functions in the above equation will be
characterized by the same time constant

F
. The basis func-

tions are highly localized, causal [6] and have shape similar
to the empirically assumed HR [5], [9],[8]. It is thus ex-
pected that a few basis functions will be able to character-
ize the HR and modeled response will have a physiological
shape [5]. Thus the modeled response signal in (2) becomes

� � � � � 34 5 6 . 7
5 � � I 8 :5 � � �  ! � � � L (7)

where O is the order of the Laguerre polynomial and 8 5 � � �  ! � � � is the convolution of > � < Laguerre polynomial with in-
put stimulus. Based on (1), if the mean value of the noisy
signal at pixel P is removed then the observed time series
at pixel P, can be stacked and expressed in a General Linear
Model (GLM) form as Q � S U � V (8)

where

Q � I W � � C � Z Z Z W � � \ � L ] and V � I � � � C � Z Z Z � � � \ � L ]
are the observed time series and noise vector at pixel P re-
spectively and U � I � � 7 . Z Z Z 7 3 L ] . Also as discussed be-
fore the noise vector v is Gaussian ARMA(1,1) and has an
unknown covariance matrix C. The \ f � O � C � matrix S
is given by,

S � i j C � 8 . � � �  ! � � � � . Z Z Z � 8 3 � � �  ! � � � � .l Z Z Z Z Z Z Z Z Z\ � 8 . � � �  ! � � � � p Z Z Z � 8 3 � � �  ! � � � � p
qr
(9)

For a known covariance matrix, the maximum likelihood
estimate of U issU � � S u w - . S � - . S u w - . Q

(10)

Since, the matrix w is a function of the three unknown noise
parameters z � | ( *+ � ( *0 � , } , closed form joint ML estima-
tion of U and z is difficult. Hence we carry out the esti-
mation of U and z iteratively. Instead of carrying out the
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estimation in the time domain we carry out the estimation
in frequency domain. The is because in frequency domain,
the covariance matrix of the noise becomes approximately
diagonal whose � � � � � element is given by the spectrum of
the noise at frequency � 	 .
� � � � � � 
 � ��� � � � � � � � � � 	 � " � �� " � �$ (11)

If

% � 
& � 
' are the columnwise Discrete Fourier Transform

(DFT) of

% � & and ' respectively, then GLM in frequency
domain can be expressed as
% 
 
& ) " 
' (12)

Since the time domain matrix & has its + columns which
are computed by linear convolution, it is necessary to pad
zeros to the time domain data before computing the column
wise DFT of

%
and & . This will ensure the circular convolu-

tion involved as a result of multiplying the DFTs will not re-
sult in time domain aliasing. The estimation procedure can
then be summarized as follows 1) Start with an initial guess
of , and hence


� . 2) Estimate the signal parameters us-
ing weighted least squares

-) 
 � 
& / 
� 0 1 
& � 0 1 
& / 
� 0 1 
%
.

3)Obtain the residuals 3 
 
% � 
& ) . 4) From the residu-
als obtain the estimate of the noise parameters , using Ex-
pectation Maximization (EM) algorithm. The complete EM
algorithm details for ARMA(1,1) are provided in [4]. 5).
Feed the new estimates of , in (2) and repeat steps 2-4 till
convergence. The estimated HR is thus given by-4 � � 6 � 
 9: ; < 1

-
=

; > � @ A; � 6 � (13)

where @ A; � 6 � has been defined in (6).

3. CONFIDENCE INTERVALS CONSTRUCTION

After HR estimation [8], to the best of our knowledge no
inference approaches on HR have been proposed so far. We
show how to develop joint confidence intervals (CI) on the
HR as a function of time based on Scheffe’s method [7].
The estimates in (13), B 
 C -

= 1 E E E -
= 9 H are I K � B � O 0 1 �

where O 
 
& /P � 0 1 
& P , with

& P being the columnwise

DFT of the matrix & in (9) with its first column removed.
If we consider constructing joint CI on functionals of the
form 4 � Q � 
 T /; B � Q 
 � � E E E � K then a natural estimator of4 � Q � is

-4 � Q � 
 T ; / -B , which is I K � 4 � Q � � T /; O 0 1 T ; � . An� Z Z � � � ] � CI on a single 4 � Q � is straightforward and given
by, ^ -4 � Q � _ ` 1 0 c d f T /; O 0 1 T ; h

(14)

However for a joint CI, we need i j such that

k ^ l -4 � Q � � 4 � Q � lm T /; O 0 1 T ; o i j q Q 
 � � E E E K h 
 � � ]
(15)

which is equivalent to

k ^ r s u
1 v ; v w

l -4 � Q � � 4 � Q � lm T /; O 0 1 T ; o i j h 
 � � ]
(16)

Scheffe’s method for upper bounding this probability is based
on the following bounding arguments-4 � Q � � 4 � Q � 
 � T /; O 0 zd � � O zd � -B � B � � (17)

Then, by Cauchy-Schwartz inequality,l -4 � Q � � 4 � Q � l o f T /; O 0 1 T ; f � -B � B � / O � -B � B � (18)

Thus, r s u
1 v ; v w

l -4 � Q � � 4 � Q � lm T /; O 0 1 T ; o f � -B � B � / O � -B � B � (19)

So, from (16) and (19)

k ^ r s u
1 v ; v w

l -4 � Q � � 4 � Q � lm T /; O 0 1 T ; o i j h o k ^ � -B � B � / O � -B � B � o i �j
h

(20)
Since | zd � -B � B � is K � Z � } � , then quadratic form on right
hand side (RHS) of (20) will have a ~ � distribution with +
degrees of freedom. Hence, the RHS of (20) is k � ~ �9 o

i �j � . Thus, i �j does not depend on K and is given byi �j 
 ~ �9 � 1 0 c d (21)

Then the joint
� Z Z � � � ] � � CI of general functionals of the

form

-4 � Q � defined in the beginning of this section is given
by, � -4 � Q � _ i j f T /; O 0 1 T ; �

(22)

Now we construct joint CI on the real and imaginary parts
of the estimated frequency domain HR using (22). From
(22) joint

� Z Z � � � ] � CI on real and imaginary parts of the
estimated HR at frequencies � 	 � � 
 � � E E E � K are� C -
4 � � 	 � H � _ i j f � T /� � � � O 0 1 � T � � � � � (23)

and � C -
4 � � 	 � H � _ i j f � T /� � � � O 0 1 � T � � � � � (24)

where i �j is obtained from (21) and

� T � � � � 
 C 
@ A1 � � 	 � E E E 
@ A9 � � 	 � H �� (25)

� T � � � � 
 C 
@ A1 � � 	 � E E E 
@ A9 � � 	 � H �� (26)

with the subscripts � and } denoting the real and imaginary
parts of the vector respectively and


@ A; � � 	 � being the Q � �
frequency domain Laguerre polynomial at � 	 . After a joint
CI has been obtained at each � 	 we compute the inverse
discrete Fourier (IDFT) of the frequency domain response
to obtain the CI on the time domain response.
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4. RESULTS

The fMRI data used in this study were collected from a vi-
sual experiment using a Siemens Allegra MR scanner, using
a gradient-echo planar pulse sequence. A visual blocked
design experiment was carried out in which a subject was
presented with a readily recognizable stimulus present on a
screen for 1700 ms. Each condition included forty different
pictures that were presented three times. Blocks of experi-
mental images were separated by 20 second interval of rest
during which a fixation dot was presented. Each block con-
sisted of ten consecutive presentations of different pictures
within a specific experimental condition appearing in a ran-
dom order. The total block duration was 20 seconds. We
carried out the modeling of HR at each pixel, by Laguerre
polynomials of order 2 and time constant a=2/3 chosen from
blood flow parameters in [5] . This order was determined
by a criterion developed in [4] after testing orders 1, 2 and
3 (full details for choosing order and optimal time constant�

will be pursued elsewhere). Figure 1, shows the value of
an intuitive test statistic which is evaluated as the ratio of
estimated signal to estimated noise at each pixel of a slice.
The values are not thresholded in this plot, it just shows the
value of the test statistic over the whole slice. Strong activa-
tions have been observed in the visual cortex as expected. In
figure 2, we plot the � � � upper and lower joint CI bounds
on the estimated HR at an activated pixel of this slice. It can
be observed that the shape of the estimated HR is similar to
assessed physiological shape In figure 3, we plot the noisy
time series (green color) after eliminating the DC value and
slope at the pixel and the estimated signal (blue color) over-
laid. Note that the smeared response also appears physio-
logical.

5. CONCLUSIONS

We have introduced the use of Laguerre polynomials in mod-
eling the HR using a physiologicallymotivated noise model.
In addition to estimating the HR, we have also constructed
joint CI on the HR. This idea of joint CI construction could
be extended in constructing it joint CI on the test statistic in
a region of interest on all slices and open insights to more
elaborate methods of making inferences.
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