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ABSTRACT

We analyze quantization based embedding and detection
schemes in terms of the data hiding framework introduced
in Refs. [1, 2]. This framework enables a better connection
between analytical results and practical designs. We lay out
the performance evaluation criteria and present comparison
results for scalar quantization based data hiding techniques.
Embedder-detector designs are evaluated based on three key
issues. These are: 1) the type of post-processing employed
at the embedder 2) the form of demodulation 3) the crite-
ria used to optimize embedding-detection parameters. Data
hiding methods are compared based on rate, correlation, and
probability of error performance merits.

1. INTRODUCTION

The design principle that governs the operation of the em-
bedder-detector pair is the most important characteristic of
a data hiding method. Among a variety of research ap-
proaches the ones that draw a lot of attention are inspired
from communication with side information. Costa in [3] as-
sumed a communications scenario in which a side informa-
tion about channel’s state, that is in the form of a signal ad-
ditive to the sent codeword, is made available at the encoder
before the transmission of a message. Using the results of
Ref. [4], Costa showed that for an additive white Gaussian
noise (AWGN) channel with Gaussian input and side in-
formation, the channel capacity does not depend on the side
information. When evaluated within the context of data hid-
ing, these results encouraged researchers to devise practical
oblivious data hiding methods that can achieve the hiding
capacity. For this purpose, several implementations that uti-
lize this approach are proposed [5, 6, 7, 8]. These tech-
niques are characterized by the use of quantization proce-
dures in order to design embedding-detection methods that

approximate the performance of Costa’s optimal encoding-
decoding.

Chen et al. in [5] provide a formal treatment of data
hiding methods that use high dimensional quantization for
embedding an information signal into a host (cover) signal,
quantization index modulation (QIM). They also introduced
distortion compensated version of QIM (DC-QIM), that can
achieve the capacity under AWGN attacks. Similarly, Chou
et al. in Refs. [9, 8], based on a duality with distributed
source coding problem, implemented the exhaustive code-
word generation of Costa’s scheme by an optimization tech-
nique through the use of optimal quantizers.

In this research direction, the most popular embedding
technique is a low complexity implementation of QIM which
relies on uniform scalar quantization, dither modulation (DM)
[5]. Ramkumar, et al. [6], considering scalar embedding,
used a continuous triangular periodic function for extracting
the embedded signal and also employed a thresholding type
of processing at the embedder. In Ref. [7], Eggers, et al. op-
timized the performance of DC-DM by a more careful op-
timization of embedding parameters. They also combined
multi-level signaling with binary coding techniques for low
attack applications, and provided some performance results,
[10]. Perez-Gonzalez, et al. [11] proposed a probability
density function (pdf) transformation type of processing for
embedding.

In this paper, we introduce performance evaluation cri-
teria for quantization based data hiding methods in terms
of the data hiding framework proposed in [1, 2]. The char-
acteristics of a data hiding method is studied in three re-
spects. These are the type of post-processing utilized at
the embedder, the form of demodulation, and the criteria
used to optimize the embedding-detection parameters. Var-
ious embedding-detection techniques are compared based
on rate, correlation, and probability of error performance
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results. In the next section, we revisit the proposed alternate
framework based on channel adaptive encoding and channel
independent decoding (CAE-CID). Section 3 investigates
the performance evaluation issues for embedding-detection
techniques. The performance results are provided in Section
4, and our conclusions are given in Section 5.

2. CAE-CID FRAMEWORK

Costa, [3], considered an AWGN channel with power con-
strained input� and side information�. A message index
� is transmitted to the receiver by properly selecting the
channel input� that is additive to �. Correspondingly, the
channel output is defined as � � ���� � where � is
the additive channel noise. Assuming�,�, � are indepen-
dent, identically distributed (iid) length� sequences of ran-
dom variables with zero covariance matrices and Gaussian
marginal distributions (i.e. � � � ��� � �, � � � ��� ����,
� � � ��� �����, and considering an auxiliary variable �
with the design � � � � ��, � 	 � 	 �, Costa showed
that communication rate achieves �

�
������ � �

��
�

� bits per

transmission for � � �
����

�

. This is the capacity of an
AWGN channel with no side information.

Consider the same communications scenario by modi-
fying the channel input as �� � ���� and the design
for the auxiliary variable as� � ��� (� � � for all the
cases). �� is called the processing distortion and obtained
as function of�. The channel output, in this case, is defined
as � � ������ � �. Assuming, �� is an iid vector
with the marginal�� � � ��� ����

� (�� is a linear function
of �), it can be shown that both scenarios yield the same
channel capacity. Therefore, the two frameworks are equiv-
alent and can be translated into each other by �� �

�
�

��
�

.

An obvious difference between Costa’s framework and
CAE-CID framework is in how channel dependent nature
reflects in the encoding-decoding operations. The channel
dependency of �, through �, in the former is shifted to
the generation of codeword ��, through ��, in the latter.
(It will next be shown that in practical data hiding meth-
ods �� actually represents the processing that follows the
embedding quantization.) The encoding and decoding that
delivers the channel capacity for both frameworks relies on
random coding techniques. Simply, the encoder finds the�
sequence, out of a huge collection of� sequences shared by
both encoder and decoder, that yields the codeword orthog-
onal to � and satisfying the power constraint � . At the de-
coder, on the other hand, the same � sequence is searched
based on joint typicality with the received�.

These results can be extended to data hiding by set-
ting up dualities between the communications and data hid-
ing frameworks. Within the context of data hiding, � is
an information signal corresponding to message index �,

� is the host signal, � is the embedding distortion intro-
duced to �, �� is the distortion induced on � due to some
processing � , �� � ����, � is the attack on the stego
signal � � ������, and � is the distorted stego sig-
nal. The encoder-decoder pair is functionally equivalent to
embedder-detector pair. However, the correspondingencoder-
decoder structures cannot be applied to practical embedder-
detector designs due to complexity issues, since the former
is simply a brute search over a huge collection of � se-
quences. Finally, the power constraint on the codeword is
dual to the Euclidean distance between � and�.

In quantization based methods, the optimal encoding-
decoding procedure is effectively simplified by generating
� sequences, as sequences of reconstruction points selected
from a set of quantizers each of which is uniquely described
by a set reconstruction points that are non-overlapping with
other sets. The number of quantizers in the set corresponds
to number of message (code) letters. Accordingly, the em-
bedding operation is the quantization of � vector with the
quantizer(s) pointed by the message signal� to be embed-
ded, and then processing the resulting quantized signal by a
choice of (post-processing) function. Hence, input� in the
CAE-CID framework is the distortion introduced to � due
to embedding quantization, and the processing distortion� �

is the result of processing� . The detection of the sent mes-
sage, on the other hand, is by determining the nearest recon-
struction point(s) to the received signal �, and generating
the message by mapping the corresponding quantizer(s) to
the message letters they are associated with.

3. PERFORMANCE EVALUATION

A quantization based embedding-detection technique can be
evaluated based on three key characteristics.

3.1. Type of post-processing

Three forms of post-processing have been proposed. These
are:

� distortion compensation, [12, 7]

� thresholding, [6]

� Gaussian mapping [11].

In Ref. [12], Chen et al. introduced distortion compensation
type of processing, DC-QIM, by subtracting ��� �� scaled
version version of embedding distortion � from quantiza-
tion index modulated signal. Hence, for distortion com-
pensation processing �� � �� � ��� and �� � ��.
Ramkumar et al. [6] proposed thresholding type of post-
processing by thresholding the maximum amount of distor-
tion to��

�
. Therefore,�� � 	
���� ��� � �

�
������� and

�� � 	������ �
�
�������. Similarly, Perez-Gonzalez et
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al. in Ref. [11] proposed Gaussian mapping as the post-
processing. They generated �� by transforming � into a
zero mean Gaussian random variable with variance � �

�
.

It’s shown in [1] that when � is Gaussian distributed,
distortion compensation is the optimal processing. How-
ever, for other distributions of �, the optimal processing is
a function of dependency between� and� � and noise level
��
�
. Therefore, for high-dimensional quantization where�

approaches Gaussian distribution, distortion compensation
will perform better. For scalar quantized case, like DM,
where � is uniformly distributed the optimum processing
varies with channel noise level.

3.2. Form of demodulation

A message is hidden into a host signal by embedding the
signal� pointed by the message index. Correspondingly,
detection of the sent message is either by sample-wise hard
decisions or soft decisions depending on the availability of
collection of�messages at the detector side. Two forms of
detectors are employed by practical methods. These are the
minimum distance detector and the maximum correlation
detector.

When the message set is present, an improved detection
is possible as the sent message is restricted to be a member
of the set. In this case, detector determines the sent mes-
sage by the minimum distance of the received signal to the
set of message signals. The message yielding the smallest
distance is deemed the sent message [5]. Alternately, de-
coder can extract �� (distorted version of�) and compute
the correlations with the set of message signals [6]. The
message signal� that has the highest correlation with the
extracted signal is declared the sent message.

If the detector has no access to the message set, then
each component of� is decoded by minimum distance de-
coding [7, 11]. Then the decoded set of values are combined
to generate the sent message.

3.3. Optimization Criteria for Parameters

In quantization based methods, embedding and detection
operations are parameterized by two variables. One is the
quantization step size�which sets the distance between the
reconstruction points of the quantizers. The other parameter
is the one that controls the amount of post-processing ap-
plied on the quantized signal in order to generate the stego
signal. This latter may take the form of scaling factor � for
distortion compensation processing, � for thresholding pro-
cessing, and �� for the Gaussian mapping processing. Both
parameter values are interdependent and are functions of the
embedding distortion, � , and the channel noise level, � �

�
.

The problem now reduces to computation of the param-
eter values for a given � and ��

�
. Since embedder-detector

operations are known, and the attack statistics are given (i.e.

AWGN), the effective noise at the detector that distorts the
embedded� can be derived [1]. In other words, � and
�� can be probabilistically related to each other by model-

ing the noise �� �� for the given channel noise statistics.
Consequently, the optimization for the parameters can be
based on different performance criteria.

� SNR – ��
�
����

��
� ��

�
� [5]: The parameter values

can be selected to maximize the ratio of embedding
distortion to sum of processing distortion and chan-
nel distortion. This can be interpreted as the maxi-
mization of signal-to-noise ratio at the detector where
signal is the quantization noise and the noise is the
deviation signal from the quantized values.

� Correlation [6]: As the noise that distorts the em-
bedded message signal can be modeled, the parame-
ter values can be selected to maximize the correlation
between� and ��, �

��

���� ���
.

� Probability of error [11]: The fact that each message
letter is assigned to a different quantizer, or equiva-
lently to reconstruction points associated with a quan-
tizer, can also be considered as a signaling scheme
that uses a periodic signal constellation. Using the
statistics of the effective noise at the detector, the pa-
rameter values can be chosen to minimize the error
probability at the given channel noise level.

� Mutual information [7]: Similarly, if the conditional
probability ������ can be calculated, then the hid-
ing rate can be obtained by computing the mutual in-
formation between� and� for a given distribution
of �. Correspondingly, the embedding and detec-
tion parameters can be selected to maximize the hid-
ing rate.

4. PERFORMANCE RESULTS

Fig. 1 displays the capacity and the hiding rates for various
methods. Additive embedding and quantization based DM
with no processing performs poorly on the two extremes, re-
spectively for very high and very low embedding power to
channel noise power ratios, WNRs. On the other hand for
midrange WNR values, DM with post-processing is able to
compensate for the inferior performance offered by additive
scheme and DM. Thresholding and distortion compensa-
tion processings perform closely in the whole WNR range,
and Gaussian mapping processing has a comparable perfor-
mance only for WNRs higher than ��dB. The normalized
correlation, �, and probability of error,� �, performances for
quantization based methods are respectively given in Figs.
2 and 3.

The relative performances of the three post-processing
functions obtained for the rate, normalized correlation, and
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Fig. 1. Comparison of the hiding rates corresponding to var-
ious hiding methods considering binary signaling obtained
for � � �� where DWR is the �
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�

ratio in dB.
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Fig. 2. The normalized correlation between� and �� for
the considered hiding methods when � � ��.

probability of error criteria are in accordancewith each other.
Thus, thresholding performs better when WNR is below ap-
proximately��dB, and at higher WNRs distortion compen-
sation and Gaussian mapping have better performances.

5. CONCLUSIONS

In this paper, we have shown how CAE-CID framework
links the practical embedder-detector designs. From this
unified point of view, we identified the characteristics of
quantization based methods that enable a better evaluation
of a given method. We also compared performances of var-
ious methods using different metrics over a range of���dB
to ��dB, and shown how the use of post-processing func-
tions improves the performance in the midrange WNRs.
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Fig. 3. The probability of error in detecting� for the con-
sidered hiding methods when � � ��.
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