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ABSTRACT

The problem of blind watermarking of an arbitrary host signal
in R

n under squared-error distortion constraints and Gaussian at-
tacks is considered in this paper. While distortion-compensated
lattice quantization index modulation (QIM) using nearly spheri-
cal Voronoi cells is known to be asymptotically capacity-achieving
in this setup, our results suggest that such schemes are suboptimal
in terms of error probability when the number of possible mes-
sages is subexponential in n. Our conjecture is substantiated by
examples involving low-dimensional lattices and is related to the
simplex conjecture in coding theory.

1. INTRODUCTION

Much of the current research in blind watermarking has focused
on the development of QIM schemes [1], which are connected to
fundamental information-theoretic binning ideas and outperform
spread-spectrum modulation (SSM) techniques in various scenar-
ios. Lattice QIM schemes in particular can be implemented rel-
atively simply. Erez and Zamir [2, 3, 4] recently proved that the
family of lattice QIM schemes contains capacity-achieving codes
for the Gaussian channel (aka watermarking with quadratic dis-
tortion constraints for the embedder and Gaussian noise attacks).
These codes are random linear codes, and loosely speaking, the as-
sociated Voronoi cells are high-dimensional and nearly spherical.

In some watermarking problems however, only a small num-
ber of bits need to be embedded, i.e., the transmission rate is well
below capacity. For such problems, we conjecture in this paper
that low-dimensional QIM lattice schemes applied to a few signal
components are ideal in an error probability sense. This is analo-
gous to the classical problem of communicating a few bits over a
Gaussian channel. Under a transmit power constraint, the optimal
codes are not random-like but have a simple geometrical property:
they form the vertices of a low-dimensional simplex.

The sparse lattice QIM codes we study are related to Chen and
Wornell’s Spread Transform Dither Modulation (STDM) codes
[1]: we quantify their advantage over other lattice QIM schemes
and show they come very close to the performance of optimal pri-
vate schemes in which the host signal is known to the receiver.
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2. MATHEMATICAL MODEL

A message m ∈ {1, 2, · · · , M} is to be embedded into a host
signal s ∈ R

n, using a secret key k ∈ K. The marked signal is
of the form x = f(s, m, k), where f is the embedding function.
The embedding is subject to the distortion constraint E‖x−s‖2 ≤
nDe for all s ∈ R

n, where De is the squared-error distortion
per sample, and the expectation is with respect to k and m. The
variables k and m are assumed to be random, independent, and
uniformly distributed. No statistical model for s is needed.

The marked signal x is subject to Gaussian attacks: y = x+w,
where y is the degraded signal, and w is white Gaussian noise with
mean zero and variance Dw.

A decoder produces an estimate m̂ ∈ {1, 2, · · · , M} of the
original message based on the degraded signal and the secret key:
m̂ = g(y, k), where g is the decoding function. The host signal s
is not available to the decoder.

2.1. QIM

The embedding methods considered in this paper are in the class
of lattice-based QIM methods, which are capacity-achieving under
the above mathematical model [2, 3, 4]. Recall the ingredients of
a lattice-based QIM scheme:

1. A coarse lattice Λ = {x : x =
∑L

i=1 ζigi, ζ ∈ Z
L},

which is the set of all integral combinations of basis vectors
g1, g2, · · · , gL in R

L;

2. a quantizer function Q : R
L → Λ mapping each vector in

R
L to the nearest (in the Euclidean metric) lattice point;

3. a set C of M minimum-length vectors c1, · · · , cM and as-

sociated cosets Λm
�
= cm + Λ, 1 ≤ m ≤ M . The vectors

{cm} are termed coset vectors, or dither vectors. The union
of cosets C+Λ = ∪M

m=1Λm may (but need not) form a lat-
tice;

4. a lattice inflation factor (“Costa parameter”) α ∈ (0, 1).

The embedding function for a subvector (block) s ∈ R
L is then

defined as

x = f(s, m) = Q(αs − cm) + cm + (1 − α)s ∈ R
L. (1)

The decoder is a lattice decoder:

m̂ = g(y) = argmin1≤m≤Mdist(αy, Λm) (2)

where dist(x, Λm)
�
= miny∈Λm ‖x − y‖.

III - 730-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



2.2. Private Spread-Spectrum Watermarking

The performance of a QIM scheme cannot surpass that of an ide-
ally designed SSM scheme in which the decoder knows the host
s. The SSM embedding function is x = s +

√
nDeum, where

{um, 1 ≤ m ≤ M} are unit-norm vectors. The decoder chooses
among the M hypotheses:

Hm : y − s =
√

nDeum + w, w
i.i.d.∼ N (0, Dw),

for 1 ≤ m ≤ M . The maximum-likelihood decoder outputs

m̂ = argmin1≤m≤M‖y − s −√
nDe um‖.

For large SNR = nDe/Dw, the error probability Pe of the de-

coder is dominated by the two nearest codewords: Pe ≈ Φ
(

dmin
2
√

Dw

)
,

where Φ(t) =
∫ ∞

t
(2π)−1/2e−u2/2 du≤ 1

2
e−t2/2 is the tail prob-

ability of the Gaussian pdf. Here dmin =
√

nDe min1≤i,j≤M ‖ui−
uj‖. For M = 2 we can choose u1 arbitrarily and let u2 = −u1;
then dmin =

√
4nDe. For increasing M the value of dmin de-

creases to
√

2nDe for M = 2n and decreases very slowly for
M > 2n [5]. Note the simple structure of optimal codes when
M ≤ n+1: their codewords form the vertices of a M -dimensional
simplex. Random codebook constructions would be clearly subop-
timal for such problems.

3. SPARSE QIM

Choose L << n and α = 1 (the latter restriction will be justi-
fied in Sec. 4). Throughout, we assume the following construc-
tion: a length-L host vector is obtained by applying an orthonor-
mal transformation to the host data n-vector, and selecting the first
L transform coefficients. The ratio L/n is viewed as a sparsity,
or time-sharing parameter: communication takes place during a
fraction L/n of the time, but the transmission power is boosted to
Den/L during that time. When Λ is the cubic lattice ∆Z

L, this
scheme is the STDM method [1]. The transformation is used for
security and perceptual-transparency reasons. Our grand goal is
to solve the following problem: Given M, De, Dw, select L, a
lattice Λ and dither vectors c1, · · · , cM ∈ R

L to minimize the
probability of error of the decoder. This problem may be too
hard to solve, but we present some conjectures and evaluate the
performance of several lattice codes.

3.1. Lattice Code Properties

The Voronoi cell V associated with lattice Λ is the set of points
that lie closer to the origin than to any other element of Λ. Voronoi
cells are shown in Fig. 1 for two lattices used in this paper.

High-rate lattice quantization theory is often invoked to model
the quantization noise Q(s) − s as random and uniformly dis-
tributed over V . This model is exact if instead of Q(·), one uses a
dithered quantizer Q(· − d) + d, where the dither vector d is uni-
formly distributed over V [2]. The use of a dither vector that is a
function of the key k approximately satisfies this model, provided
that the key is long enough.

Two geometrical properties of V are fundamental in our anal-
ysis. The first is the covering radius of V:

ρcov
�
= max

x∈V
‖x‖ = max

x∈RL
dist(x, Λ). (3)

∆

(a) square lattice Z
2

∆

(b) hexagonal lattice A2

Fig. 1. Voronoi cells (shaded areas) for L = 2: (a) square lattice;
(b) hexagonal lattice. Deep holes are marked with white squares
and circles.

The second is the embedding distortion per sample:

De =
1

L

1

Vol(V)

∫
V
‖x‖2 dx. (4)

The total squared-error distortion is

nDe = LDe. (5)

Other properties of the lattice, such as the packing radius or the
volume, have no bearing in the analysis.

Deep holes. The deep holes of a lattice Λ are the points in R
L

that are furthest away from Λ, i.e., v is a deep hole⇔ dist(v, Λ) =
ρcov. In general for a given lattice Λ there is a minimal set of
vectors v1, · · · , vnDH such that the set of deep holes is equal to
∪nDH

i=1 vi+Λ. In the case L = 2, we have nDH = 1 and nDH = 2
for the square lattice and the hexagonal lattice, respectively; the
corresponding deep holes are shown in Fig. 1. Deep holes are
ideal candidates for the dither vectors, as elaborated below.

Lattice Code Minimum Distance. Define

dmin
�
= min

1≤i,j≤M

1√
L

dist(Λi, Λj) ≤ 1√
L

ρcov (6)

which is a function of V and the dither vectors {ci, 1 ≤ i ≤ M}.
We also define the normalized quantity

γ
�
= dmin/

√
De (7)

which is invariant to scalings of the lattice code. Without loss of
generality, we often take c1 = 0. To have equality in (6), ci must
be a deep hole of cj + Λ for each 1 ≤ i, j ≤ M . Then the code
is ideal in the following geometric sense: dist(Λi, Λj) = ρcov for
all i, j. This condition also requires M ≤ nDH + 1.

The parameter γ defined in (7) is important in our analysis.

A different normalization (using [Vol(V)]1/L instead of
√

De) is
appropriate in the study of capacity-achieving coset codes [6].

3.2. Error Probability

When n is large, 1
n

log2 M << 1 and α = 1, the calculation of
error probabilities is relatively simple. Indeed the detector must
choose between M composite hypotheses:

Hm : y = x + w, x ∈ Λm, w
i.i.d.∼ N (0, Dw),
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for 1 ≤ m ≤ M . Also define

dmin = min
1≤i,j≤M

dist(Λi, Λj) =
√

Ldmin = γ
√

nDe.

For large n, the error probability Pe of the decoder (2) is domi-
nated by the two closest lattices, and Pe ≈ Φ( dmin

2
√

Dw
). More pre-

cisely, the approximation is tight in the exponent: limn→∞ − 1
n

ln Pe

= γ2De
8Dw

. Hence the problem of minimizing Pe is asymptotically
equivalent to the problem of maximizing γ.

3.3. Are nearly spherical Voronoi cells desirable?

While lattice codes with nearly spherical Voronoi cells are asymp-
totically (as n → ∞) capacity-achieving (i.e., limn→∞ 1

n
log2 M

= C > 0) [3, 4], the same need not be true for small, fixed M . To
gain some insight into this problem, let M = L = 2 and compare
the performance of square and hexagonal lattices. The correspond-
ing Voronoi cells are squares and hexagons, respectively. For the

square lattice, we have ρcov =
√

24De; for the hexagonal lattice,

ρcov =
√

19.2De. Note that if V were a disk, we would have
ρcov =

√
8De. Consider now two watermarking codes based on

Fig. 1.
Square lattice: Here ∆ =

√
6nDe to satisfy the distortion con-

straint, and V = [−∆
2

, ∆
2
]2. Choose c1 = 0 and c2 = (∆

2
, ∆

2
)T ,

which is a deep hole of V . The distance between the lattice Λ
and its translate c2 + Λ is ‖c2‖ = ∆√

2
=

√
3nDe = dmin (thus

γ =
√

3).
Hexagonal lattice: γ =

√
12/5, as calculated in Sec. 3.5.

The “more spherical” of the two lattices is therefore the worse one.
In fact, “nearly spherical” lattices can be constructed using random
generator matrices when L → ∞. It follows from [4] that γ → 1
for such lattices, which is 42% lower than the best γ.

3.4. Construction A

While generally not optimal, Conway and Sloane’s Construction
A [5, Ch. 5] can be used to construct good QIM codes. Let Λ be
the cubic lattice ∆Z

L; its Voronoi cell V is the cube [−∆
2

, ∆
2
]L.

Due to the embedding distortion constraint, we have nDe
L

= De =
∆2

12
. Choose a (L, kc, dH) binary code C (where L = dimension,

M = 2kc = number of codewords, and dH = minimum Hamming
distance between codewords), and let cm be the m-th codeword in
C, scaled by ∆

2
. We have d2

min = dH(∆
2
)2 and hence γ2 = 3 dH

L
.

The Plotkin bound [5] yields dH ≤ LM
2(M−1)

, and a variety of
good codes attain that bound. For M = 2, equality is achieved
only for the (L, 1, L) repetition code. Therefore, under Construc-
tion A, simple scalar QIM with arbitrary L is optimal when M =
2, and achieves γ2 = 3. For M = 4, we choose L = 3 and
the (3,2,2) code C = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}; then
γ2 = 2. Note that C + 2Z

3 is D3, the fcc lattice. For any M , we
can achieve γ2 = 3M

2(M−1)
, but no better.

3.5. General Approach

Construction A is simple but generally nonoptimal for M > 2.
Consider for instance M = 3, and let Λ be the scaled hexagonal
lattice A2 of Fig. 1(b). Due to the embedding distortion constraint,
we have nDe

L
= De = 5∆2

72
, where ∆ is the distance between

adjacent lattice points. We choose c1 = (0, 0), c2 = (∆
2

, ∆

2
√

3
),

embedding scheme (C + Λ)/Λ M = 2 M = 3 M = 4 M → ∞
Z/MZ L = 1 3 * 4

3
3
4

12
M2

Z
L/LZ

L
L = log2 M 3 3

2
3
L

C + 2Z
L/2Z

L
L ≥ log2 M 3 2 2 ∼ 3

2

A∗
2/A2 L = 2 12

5
12
5

* 9
5

∼ 6
5

D3/2Z
3 L = 3 2 2 2 1

Z
3/D3 L = 3 8

3
∼ 4

3

Z
4 ∪ D+

4 /D4 L = 4 30
13

30
13

∼ 15
13

Private SSM 4 3 8
3

2

Table 1. Values of γ2 =
d2
min

nDe
for different watermarking schemes

and different numbers of messages. Boxes indicate the best perfor-
mance we have obtained for each value of M . Asterisks indicate
the performance of ideal codes.

and c3 = (0, ∆√
3
); the latter two are deep holes of Λ. Here d2

min =

∆2

3
= 12

5
nDe, which is 20% better than the performance using

cubic lattices. Note that C + A2 is A∗
2, the dual hexagonal lattice;

and the code is ideal in a geometric sense (see Sec. 3.1).
The performance of various QIM schemes is summarized in

Table 1. Given an arbitrary Λ and C, we have nDe
L

= De =

G(Λ)[Vol(V)]2/L, where G(Λ) ≥ 1
2πe

is the normalized second
moment of the lattice. 1 Then we calculate

γ2 =
d2
min

nDe
= d

2
min(C, Λ)[De(Λ)]−2/L

using an arbitrary lattice scale parameter (e.g., ∆ = 1).
Consider the case M = 2 again. Let Λ be the checkerboard

lattice DL = {x :
∑L

i=1 xi is an even integer}. The lattice
D3 is the fcc lattice and its deep holes are the elements of the
shifted lattice (1, 0, 0) + D3. Here γ2 = 8

3
. The deep holes of D4

are the elements of the two shifted lattices (1, 0, 0, 0) + D4 and
( 1
2
, 1

2
, 1

2
, 1

2
) + D4. Here γ2 = 30

13
≈ 2.30.

4. CHOICE OF α

With the choice α = 1 used in the previous section, the noise in
the decoder’s statistical test (8) is Gaussian; the error exponent is
given in Sec. 3.2. The choice α = 1 finds a theoretical justification
when L << n, as discussed below.

One may suspect that performance could be improved by us-
ing α < 1. The motivation is Zamir, Shamai and Erez’s anal-
ysis [2, 3, 4] which has proved that QIM schemes using α =

De
De+Dw

, “nearly spherical” Voronoi cells, and L = n are capacity-
achieving. That is, the number of messsages is exponential: M =
2nR, where R is just below the capacity C = 1

2
log2(1+De/Dw).

The above value of α is the one that minimizes the variance σ2 =
DeDw

De+Dw
of the noise at the decoder. When M is fixed or subex-

ponential in n, one could ask whether the results of the previous
section could be improved by selecting α = De

De+Dw
and L = n.

The answer is not obvious – the variance of the noise is reduced

1For the cubic, hexagonal, D3 (fcc) and D4 lattices, we have G(Λ) =
1
12

, 5
36

√
3
, 19

192 21/3 and 13
120

√
2
, respectively.
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when α < 1, but the noise becomes non-Gaussian, and might thus
have heavier tails. In an asymptotic probability of error analysis,
the latter effect could dominate.

To gain some insight into this tradeoff, we explored the choice
of scalar uniform quantizers for binary hypothesis testing (M =
2), with L ranging from 1 to n. Here ∆ =

√
12 n

L
De. The two

codebooks are: ∆Z
L and (∆

2
, · · · , ∆

2
) + ∆Z

L, as illustrated in
Fig. 1(a). The detector is presented with two hypotheses:{

H0 : αy mod ∆ = v mod ∆

H1 : αy mod ∆ = (∆
2

+ v) mod ∆

where v = (1 − α)z + αw is a weighted combination of the
quantization noise z (uniformly distributed over [−∆

2
, ∆

2
]) and the

attack noise w ∼ N (0, Dw). The value of α that minimizes the
variance of the noise v at the detector is

α =
(n/L)De

(n/L)De + Dw
. (8)

Clearly α → 1 as n
L

→ ∞, which motivated our choice of α = 1
in the previous section. Also note that the value of α that mini-
mizes Pe is slightly different from (8). Let ṽ = v mod ∆. The
probability of error exponent is given by

lim
n→∞

− 1

n
ln Pe = β

where β = − ln
∫ ∆

0

√
pṼ (ṽ)pṼ (ṽ + ∆

2
) dṽ is the Bhattacharyya

coefficient [7] between the rival distributions at the detector. Fig. 2
compares log10 Pe and the Bhattacharyya bound as a function of
L for De = Dw and n = 15. The Bhattacharyya bound is a
useful predictor of log10 Pe in the sense that the gap, normalized
by 1

n
, is indeed small. Fig. 3 shows the Bhattacharyya bound on

log10 Pe vs De/Dw for several values of L and α selected as in
(8). The standard QIM scheme (L = n) performs worse than the
STDM scheme (L = 1, α ≈ 1). The suboptimality of the former
is attributed to the non-Gaussian nature of the quantization noise,
as discussed above. In these experiments, performance improved
monotonically as a function of L.

5. DISCUSSION

For M = 2 and M = 3, we conjecture that the scalar and hexag-
onal QIM schemes with L = 1 and L = 2, respectively, are op-
timal. The codes are ideal in the geometric sense mentioned in
Sec. 3.1. Remarkably, distortion compensation is not needed in
this setup. The error exponents are 3

4
and 4

5
times the optimal

error exponent in the known host case, respectively.
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