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ABSTRACT
Embedded image coding is a compression technique that
yields bit streams robust to truncation. The first embed-
ded wavelet-based compression algorithms were designed
to optimize for mean-squared-error (MSE). More recent al-
gorithms incorporate a variety of perceptually-based opti-
mization criteria, which are implemented by selecting sub-
band quantization step-sizes based on a target quality (and
therefore rate). Since these step-sizes vary with rate, a bit
stream optimized for a specific rate, if truncated, will not
necessarily reflect the perceptual quality achievable at this
lower rate. Constraints are given under which a wavelet-
based perceptual model can generate an embedded image
representation yielding perceptually derived results over a
range of rates. This kind of embedding is implemented by
strategically selecting the order in which subband bit planes
are coded. When truncated, the resulting embedded streams
provide perceptually tuned images.

1. INTRODUCTION

Embedded image coding is a compression technique that
yields bit streams robust to truncation. One of the most
commonly used embedded coding techniques is bit plane
coding. Traditional bit plane coders transmit subband bit
planes in order of bit significance (most-significant to least-
significant), which minimizes MSE due to truncation. In
this way, all subbands are treated with equal importance.
It is well accepted, however, that minimizing MSE does
not maximize visual quality. Many perceptual models have
been applied to non-embedded coding, but are not suited for
embedded applications; models typically generate subband
quantization step-sizes for a single target rate, while embed-
ded streams are decodable at a multitude of rates. Ideally,
a perceptual embedded stream will produce perceptually-
tuned images equivalent to those generated by a fixed-rate
perceptual coder.

Many efforts in unifying embedding and perceptual op-
timization have involved modifying well-understood algo-
rithms to incorporate perceptual considerations. For instance,

locally rescaling wavelet coefficients prior to zero-tree cod-
ing can be used to improve perceptual quality [1, 2] of em-
bedded streams. One of the more flexible schemes for em-
bedded perceptual coding was proposed by Li [3], in which
an adaptive version of this weighting scheme can be im-
plemented by selecting the order in which subband compo-
nents, such as bit planes, are coded. This visual progressive
coding scheme, denoted VIP, was adopted into the JPEG
2000 standard. It was not shown, however, how to con-
struct an optimized ordering based on an arbitrary percep-
tual model.

This work presents a method for creating an embedded
image representation (“embedifying”) based on a general
class of perceptual models. Given that the model satisfies a
small set of constraints, explained in section 2, a percep-
tual subband bit plane coding order can be derived. An
algorithm for determining the order is given in section 3.
This scheme can be applied to any perceptual model (as
described in section 2) and can be combined with any bit
plane coding technique. Bit streams generated in this fash-
ion yield perceptually derived results, even when truncated.
Section 4 illustrates this method for two perceptual models,
and compares the results with traditional MSE-optimized
bit plane coded streams.

2. PERCEPTUAL MODELS AND EMBEDDED
CODING

Many perceptual models are implemented either 1) by tai-
loring subband quantization step-sizes to retain the most
perceptually salient information [4–6] or 2) by performing
rate-distortion optimization with a subband weighted-MSE
distortion metric [7]. Note that a method of one type can be
converted to the other, since for each subband MSE value,
there is an associated quantization step-size that will induce
the same amount of MSE, and vice versa. Any model that
gives a monotonic relationship between subband quantiza-
tion step-sizes (or subband MSE proportions) and visual
quality can be used to derive a bit plane coding order.

Different perceptual models analyze quality with differ-
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Fig. 1. Example perceptual and truncation mappings for a
subband s.

ent measures of visual distortion, such as MSE or contrast of
the distortion image. The relationship between quality and
step-size can be re-parameterized in terms of rate. In par-
ticular, rate can be estimated from the subband step-sizes,
using any number of modeling techniques. One such con-
venient method is given in [8], where each subband is con-
sidered a quantized version of Laplacian process. The re-
parameterization places all models/distortion measures on a
standard setting, simplifying discussion and analysis.

Let R represent normalized rate, i.e. a fraction of the
overall rate required to losslessly represent an image with a
given coder. For an image composed of subbands with all
coefficients quantized to zero, R = 0. For the unquantized
wavelet coefficients, R = 1, since the image is already fully
described. Let s denote a wavelet subband. Any perceptual
model, as described above, will yield a perceptual mapping
between R and quantization step-size, Qs(R) for each band.
In a compression system with a 5-level wavelet transform, a
usable perceptual model will generate 16 such scalar maps,
one for the low-frequency band, and 15 for all the high-
frequency bands.

3. BIT PLANE CODING ORDER

Embedded bit plane coders naturally yield mappings be-
tween normalized rate and quantization step-size. These
functions are denoted ̂Qs(R) and are referred to as trun-
cation mappings. Truncating an embedded image represen-
tation effectively induces a quantization step-size on each
band. The functions ̂Qs(R) are monotonically decreasing
and piecewise-dyadic-constant. Specifically, for every R1 <
R2,

̂Qs(R1) = ̂Qs(R2) · 2k, k ≥ 0 ∈ Z. (1)

Note ̂Qs(0) = 2K · δs, K ∈ Z
+, where δs ∈ R

+ is the
base quantization-step size. For δs �= 1, the subband is first
(lossily) quantized with a step-size of δs. Example percep-
tual and truncation mappings are given in Figure 1.

A set of truncation mappings describe a subband bit
plane coding order completely. As an image is coded, R
increases from 0 to 1, and the order in which the discontinu-
ities appear over all s is the order that subband bit planes are
coded. The relative positioning of these discontinuities and
not the absolute relationship between ̂Qs(R) and R deter-
mines this order. Thus, every collection of truncation map-
pings (for all subbands), { ̂Qs(R)}, can be associated with a
coding order.

The problem of determining a perceptual coding order
can now be more formally stated. Given a perceptual model,
for each subband s and associated perceptual mapping, con-
struct a truncation mapping, which minimizes the average
distance between Qs(R) and ̂Qs(R). This criterion is de-
signed to minimize per subband degradation in perceptual
quality due to truncation. Mathematically, this task corre-
sponds to solving the following, for each s:

̂Qs(R)∗ = argmin
̂Qs(R)

||Qs(R) − ̂Qs(R)||p, (2)

where ||·||p denotes the p-norm. Assuming that ∀k ∈ Z, ∃R

such that Qs(R) = ̂Qs(R) = 2k · δs, it can be shown
that ̂Qs(R)∗ is the same using any p-norm. For any set of
mappings, the solution for each ̂Qs(R) is equal to Qs(R)
rounded to the nearest dyadic multiple of the base quantizer
step-size:

̂Qs(R) = δs · 2�log2( 4·Qs(R)
3·δs

)�, (3)

Figure 2 depicts the relationship between discontinuities
in a set of ̂Qs(R) mappings and the bit plane coding order.
Note that to establish the relative order among all bands, in
a system with a 5-level wavelet transform, the discontinu-
ities in 16 truncation mappings must be compared. Table 1
compares bit-significance (MSE) coding order with the or-
der depicted in Figure 2. The following algorithm computes
the order in which the discontinuities occur as R increases
in a complete set of truncation mappings. Note that the ac-
tual truncation mappings resulting from this coding order
will resemble the desired mappings, though these sets might
not be identical. Let M be the largest coefficient magnitude
among all subbands:

Algorithm: Determination of bit plane coding order

i) set R = 0, ks = �log2(M)�∀s

ii) set ∆ � 1 such that ∀R, ̂Qs(R) > ̂Qs(R + ∆)
for at most one subband s

iii) ∀s compute ̂Qs(R)
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Fig. 2. Example truncation mappings for HL5, HL4 and
HL3 bands derived from a distortion-contrast model.

if ̂Qs(R) > ̂Qs(R + ∆) and ks > 0
code bit plane ks of subband s
set ks = ks − 1

iv) if ks = 0 ∀s
end

else
set R = R + ∆ and goto iii)

A perceptually optimized order can thus be determined with
a simple algorithm that runs at the encoder and the decoder.
The required coding overhead includes M as well as any
other auxiliary information needed by the perceptual model.

4. RESULTS

The bit plane ordering algorithm described in section 3 can
be applied to many perceptual models. Here, two exam-
ples are given. Recent work [6] involves quantifying the
perceived visual response to compound wavelet distortions.
This technique maps visual distortion, computed as root-
mean-squared error in the luminance domain, to a distribu-
tion of MSE among wavelet subbands. The resulting map-
ping between contrast and subband MSE can be formulated
in terms of rate and quantization step-size, as in section 2,
to generate Qs(R). Coding overhead consists of per band
standard deviation and kurtosis, which is used at reconstruc-
tion to derive ̂Qs(R). These statistics may be inserted in
the bit stream only when it becomes necessary to evaluate
̂Qs(R) for a new subband.

The JPEG 2000 standard includes the option to scale
subband coefficients prior to coding with weights based on
a fixed viewing distance and a perceptual contrast sensitiv-
ity model [7]. These weights are inversely proportional to
quantization step-size, and since rate can be estimated from

Table 1. MSE-based coding order compared with the per-
ceptual order established in Figure 2.

coding order MSE distortion-contrast
subband HL5 HL4 HL3 HL5 HL4 HL3

bit plane 1 1 5 9 4 1 3
bit plane 2 2 6 10 5 2 7
bit plane 3 3 7 11 10 6 8
bit plane 4 4 8 12 13 9 11

Table 2. Comparison of number of subjects preferring the
perceptually-ordered versus MSE-ordered representations.

coding order perceptual MSE-based

distortion-contrast, 0.134 bpp 6 1
distortion-contrast, 0.090 bpp 7 0

CSF-based, 0.134 bpp 5 2
CSF-based, 0.090 bpp 4 3

step-size, each set of weights can be associated with a set
of curves mapping rate to step-size. Note, however, that
since the weights have been optimized for a specific rate,
in a sense, these curves are meaningful around a specific
rate. In [3], Li generates images using 2 sets of weights.
Below 0.125 bpp, one set of weights is used to control bit
plane order, while above this threshold uniform weights are
employed. To utilize the algorithm described in section 3,
intermediate weights can be effectively implemented for a
set of Qs(R) curves created as linear combinations of the
rate v. step-size curves from each set of weights. Though
the visual weights used in JPEG-2000 are the same for all
images, it is still necessary to transmit the bit plane cod-
ing order, since the relationship between rate and step-size
varies from image to image.

Embedded bit streams are constructed with a 5-level 9/7
wavelet transform of 512 × 512 greyscale 8-bit images, us-
ing the models described above to determine coding order.
The bit planes are independently coded with a Tarp-filter
based arithmetic coder [9]. MSE-embedded perceptual streams,
targeted for quality around 1 bpp, are similarly created based
on the same models, where subbands are coded in tradi-
tional bit plane (MSE) order. Using each model, perceptually-
embedded and MSE-embedded streams are truncated and
compared at a set of rates.

Images are compared in a perceptual test under set light-
ing conditions at a fixed viewing distance (three image heights).
Test subjects are given the original image and asked which
image (the perceptually-ordered or MSE-ordered represen-
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Fig. 3. embedded (left) and MSE-ordered (right) coding of barbara based on a distortion-contrast model at 0.090 bpp.

Table 3. Coder fractional rate comparison (per scale) using
barbara at 0.090 bpp for perceptual and MSE coding orders.

scale 5 4 3 2 1

perceptual distortion-contrast .49 .51 .00 .00 .00
MSE distortion-contrast .34 .47 .19 .00 .00
perceptual CSF-based .22 .34 .44 .00 .00

MSE CSF-based .34 .42 .19 .05 .00

tation) displays less perceptual distortion. The results of
this test for barbara are depicted in Table 2. Clearly, the
perceptually-embedded stream is preferred to the MSE-ordered
perceptual representation, especially at low rates.

Table 3 compares the distribution of bits among scales
for perceptually-ordered and MSE-ordered streams truncated
at 0.090 bpp, and Figure 3 illustrates the distortion-contrast
comparison at 0.090 bpp. Differences are most noticeable
in the tablecloth, the object on the table, the shawl, and the
face. The right-hand image contains sporadic detail that al-
most appears as noise at this low rate, while the image on
the left more accurately preserves the overall image struc-
ture, especially in the face and the object on the table. The
bit distributions reveal that MSE-ordered streams spend bits
on higher frequency information, at the cost of blurring var-
ious structural elements in the scene. Based on the results of
the perceptual test, the structural information plays a more
important role in determining visual quality at low rates.
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