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ABSTRACT

A method for lossless coding using a multi-resolution 

scheme with an adaptive lifting step is introduced in this 

paper. To this goal, a generalized lifting scheme, where 

the sums included in the classical lifting are generalized to 

include possibly non linear and/or adaptive operations, is 

proposed. The conditions for the reversibility of the 

scheme are analyzed. Although the framework is valid for 

any type of sampled signals, we focus in particular on the 

discrete case (signals represented with a finite number of 

bits). Finally, experiments with a generalized prediction 

step are reported. They show the interest of the approach 

for lossless compression. 

1. INTRODUCTION 

In this paper, a wavelet based multi-resolution 

decomposition for image compression is described. The 

motivation of this work comes from the fact that, in 

current schemes, textures and edges need the major part of 

the bit-rate because wavelets are optimal bases for many 

signal classes with some smoothness. However, they are 

much less efficient representing singularities. In fact, a 

compromise arises when choosing the wavelet: some are 

more adequate for smooth regions and others behave 

better near discontinuities. Hence, many researchers have 

proposed adaptive schemes that modify the underlying 

wavelet bases according to the local signal characteristics. 

Initially, the complexity and challenge was to assure the 

reversibility of the filter banks. Several works attained this 

goal. Later, the lifting scheme by Sweldens [8] gave a 

suitable framework for developing time-varying wavelet 

filter banks thanks to the initial polyphase decomposition 

(or Lazy Wavelet Transform, LWT) which allows all kind 

of signal statistical analysis of one branch in order to 

apply a good filter on the other one, and furthermore, this 

analysis is reproducible at reception (synthesis) and thus 

the transform is reversible. Many contributions follow this 

idea, like [1, 2, 3, 5, 9] or the one by Egger et al. [4]  

which can be understood within the lifting framework. 

These works try in many different ways to exploit the 

correlation existing among both branches of the 

decomposition and considering the local form or statistics 

of one signal to obtain a good prediction / interpolation of 

the other one.  
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Fig.1. Lifting Scheme 

Going one step further, adaptation may be improved if 

the information given by the same branch to be filtered is 

considered. There exist methods for searching the best 

basis for the entire signal or for a class of signals, but this 

requires book-keeping and so additional bit-rate to attain 

the reversibility. A point-wise adaptation is also possible 

by using a criterion invariant to the filtering so that it can 

be recovered at the decoder and allow choosing the correct 

synthesis filter [6].  

Following this line of research, in this paper, we 

propose a generalized lifting scheme where the classical 

sums included in the lifting scheme are generalized to 

include possibly non linear and/or adaptive operations. 

Furthermore, we propose a general condition to guarantee 

the reversibility of the generalized scheme. Finally, we 

propose a specific generalized lifting scheme and illustrate 

its interest for lossless compression.  

In Section 2, the classical and the adaptive lifting are 

briefly reviewed. The generalized lifting scheme is 

discussed in section 3. Section 4 focuses on the discrete 

case and section 5 presents a specific generalized 

prediction. Experiments are reported in section 6 and 

finally, conclusions are established in section 7.  

2. LIFTING AND ADAPTIVE LIFTING 

The lifting scheme (Fig. 1) introduced by Sweldens is a 

well-known method to create bi-orthogonal wavelet filters 

from other ones. Usually, a polyphase decomposition 

(LWT) of the input signal xo is done, obtaining an 

approximation signal x and a detail signal y. Then, lifting 

steps are performed by predicting the detail signal from 

the x samples (1) and updating the approximation signal 

with the y samples (2). The so-called prediction and 

update steps improve the initial lazy wavelet properties 
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Several steps (prediction + update or vice versa) may 

be concatenated in order to reach the desired properties for 

the wavelet basis. These prediction and update operators 

may be a linear combination of x and y, respectively, or 

any non-linear operation, since by construction the lifting 

scheme is always reversible.  

The adaptive lifting scheme [2, 5, 6] is a modification 

of the classical lifting. Figure 2 illustrates an example of 

adaptive update step followed by a fixed prediction step. 

At each sample n, an update operator is chosen according 

to a decision function D which depends on y as in [2, 5], 

but may also depend on the sample xnx  being updated 

[6]. In this last case, a problem arises because the decoder 

does not know the sample x[n] used at the coder for the 

decision. Instead, the decoder has access to x'[n], the 

updated version of x[n] through an unknown update filter. 

Therefore, the challenge is to find a decision function and 

a set of filters which allow us to reproduce the decision 

D(x[n],y) at the decoder (3), thus obtaining a reversible 

decomposition scheme. This property is known as the 

“decision conservation condition” [6]: 

),'('),( ynxDynxD                     (3) 

In practice, the range of D may indicate that there 

exists an edge on x[n] if D is the L1-norm of the gradient, 

or that x[n] corresponds to a textured region if a texture 

detector D is used (like in [4]), or may indicate other 

geometrical constraints. Depending on the local 

characteristics of the signal at n assessed by D, a suitable 

filter for these characteristics may be chosen. A classical 

strategy consists of using low-pass filters for smooth 

regions and short-support filters for edges. 
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Fig. 2.  Adaptive Update Lifting Scheme 

3. ADAPTIVE GENERALIZED LIFTING  

In this section, we propose the generalization of the lifting 

scheme illustrated in Fig. 3. As can be seen, the scheme is 

very similar to the classical lifting except that the sums 

after the prediction and the update are embedded in a more 

general framework. The prediction is viewed here as a 

function that maps y[n] to y’[n] taking into account values 

from x. In a classical lifting, the prediction is viewed as a 

filter that generates a value that is used to modify y[n]

through a sum. In the generalized scheme, we have 

removed the restriction of modifying y[n] only through a 

sum and open the door to more complex, possibly 

adaptive or nonlinear modifications. A similar 

generalization is done for the update. 
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Fig. 3.  Generalized Lifting Scheme 

Of course, in order to have a reversible scheme, the 

generalized prediction and update cannot be chosen 

arbitrarily. Let us analyze the restriction we have to 

impose, for example, on the generalized update:  

Let A be the space of functions a from k to itself: 
kkaAa : , such that: 

{z1’[n], z2’[n-n1], …, z2’[n-nk]} = 

a {z1[n], z2[n-n1], …, z2[n-nk]}      (4) 

Let A0 be the subspace of A containing all functions 

that do not modify z2[n], that is for which the restriction to 
k  is the identity: IdaAaA kko |

| .

In the sequel, we consider a generalized update as a 

function of A to highlight the dependency with respect to 

the samples. But, as it can only modify x[n], it should be a 

function of A0. In order to have a reversible scheme, the 

generalized update should be a bijective function of A0.

The same analysis can be done in the case of the 

generalized prediction. As a result, both the generalized 

prediction and update should be bijective functions of A0.

4. DISCRETE CASE 

The scheme presented in section 3 assumes that the values 

taken by x and y are real numbers. In many applications 

related to compression, the values of x[n] and y[n] are

quantized before transmission. In this case, it is the 

mapping Q(a{z1[n], z2[n-n1], …, z2[n-nk]}, where Q

represents the quantization, that should be a bijective 

function of A0. We have found several reversible schemes 

that include quantization. However, the resulting 

decompositions were not suitable for compression.   

An alternative approach is to consider the discrete 

version of the generalized lifting scheme. To this goal, we 

assume that the values taken by x and y are integers, and 

that the generalized prediction and update output are also 

integers. In this case, no quantization is necessary after the 

update or the prediction and the only issue is to design a 

discrete bijective mapping. 

Consider now the following framework for discrete 

gray-scale images where each pixel is represented by 8 

bits. Without loss of generality, we will assume that 

sample values may range from -128 to 127. Let us call 

Z255 the set of integers that belong to the interval 

127,128 . The discrete generalized update and 

prediction are now functions from the k
xZZ 255255

 space to 

III - 58

➡ ➡



itself that can only modify the first components. The 

statements made in section 3 are also valid for the discrete 

case. In particular, reversibility is obtained if the 

mappings: {z1’[n], z2[n-n1], …, z2[n-nk]} = a{z1[n], z2[n-

n1], …, z2[n-nk]} are bijective. 

For z2[n-n1], …, z2[n-nk] fixed, the set of all possible 

values of z1[n] describes a column in the k
xZZ 255255

space.

Let
K

Zi
C

255

denote such a column: 

KkZi
innzinnznzC K 21121 ,,,

255

 (5) 

As, the generalized update and prediction can only 

modify the first component z1[n], they map the column 

K
Zi

C
255

to itself. In order to have a reversible scheme, the 

mapping of 
K

Zi
C

255

to itself should be bijective for all 

columns. Fig. 4 illustrates the case where k=2. To simplify 

the notation the column 
K

Zi
C

255

 is denoted by Ci,j.
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Fig. 4. Discrete mapping from 2

255255 xZZ to itself. The 

lifting step is reversible if all mappings from every column 

Ci,j to itself are bijective.

The number of bijective mappings of a column to 

itself is equal to the factorial of 256. The mapping choice 

depends on two factors. First, mappings should be defined 

and computed easily, since arbitrary mappings require of a 

look-up table which size is proportional to the number of 

points of the discrete space. Furthermore, a great amount 

of operations to compute the transform is not desired.  

The second factor is related to the goal of 

compression. Entropy coding methods like EBCOT, 

SPIHT [7] or the Embedded Zero-Tree coders rely on two 

facts to reach high-compression rates: first, in general, 

detail samples have small values and, second, large values 

are spatially related. If a discrete generalized lifting is used 

in combination with a classical entropy coder, it should 

produce wavelet-type coefficients. For instance, a 

generalized prediction should map the more probable 

points of k
xZZ 255255

 to the smallest z1’[n]=y’[n] values. 

5. ADAPTIVE DISCRETE PREDICTION 

The two factors discussed above are considered now to 

create the mappings for a discrete generalized prediction 

step. For simplicity, we restrict ourselves to 2k , as the 

classical lifting with the LeGall filter, used in the 

JPEG2000 standard for lossless compression. In the case 

of 1D signal, the generalized prediction produces a detail 

sample y'[n] from y[n] and its two neighbors x[n] and 

x[n+1]. This can be written as:  

{y’[n], x[n], x[n+1]} = Pred { y[n], x[n], x[n+1]}   (6) 

In the 2

255255 xZZ  space, the line l: x[n]=x[n+1]=y[n]

plays a special role because every point p on l must be 

mapped to the point (0, x[n], x[n+1]) to have a zero detail 

sample if the input signal is a constant. Then, the mapping 

of a point p:(y[n], x[n],x[n+1]) is based on its relative 

position with respect to the line l. The distance of a point p

to l is given by:  

11

1),(

22

2

nxnxnxnx

nynxnxnylpdist               (7) 

The prediction is constructed by reordering the points 

of a column Ci,j according to their distance to l. The 

distance is a parabola with respect to y[n] (eq. 7). Its 

minimum is reached when y[n] = ymin = (x[n] + x[n+1])/2.

It is always in the range of the space. This minimum point 

ymin is mapped to zero to vanish the first moment. Then, 

inside the so-called “linear zone” (Fig. 5), the values 

below ymin are mapped to negative integers maintaining 

their order, and similarly, the values over ymin are mapped 

to positive integers. Beyond the linear zone, values are 

alternatively mapped to the positive and negative 

remaining integers. As can be seen, the mapping in the 

linear zone is equivalent to: 

y’[n] = y[n] – (x[n] + x[n+1])/2                              (8) 

This generalized prediction is equivalent to the 

classical LeGall's prediction step. Outside the linear zone, 

the mapping does not correspond to a simple linear filter.  
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Fig. 5. Distance between the points of a column to the line 

l and the proposed mapping for the generalized prediction.  

This mapping offers several advantages: First, it can 

easily be computed through a distance function. Second, if 

y[n] falls within the linear zone, the resulting detail sample 
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has the typical high-pass meaning. This fact is important if 

an update filter follows the prediction. An update is 

needed for multi-resolution decomposition, since posterior 

processing of the approximation signals performs better 

when it is a sampled low-pass version of original signal. 

6. EXPERIMENT AND RESULTS

The generalized prediction step performances are assessed 

in a multiresolution framework. To this end, the scheme is 

completed with an adaptive update (Equ. 9), which is 

space-varying according to the values of the detail signal. 

A sample x[n] is updated with two detail samples y'[n-1] 

and y'[n]. If the modulus of these detail samples are small, 

then, as first approximation, they are high-pass samples 

and can be directly used for an update step as classical 

updates do. Detail samples with large values means, also 

as first approximation, that y[n] comes from an edge. If 

smooth x' is desired, the edge should not flow to lower 

resolution levels and consequently, no update is 

performed. Values have small or large value according to 

a threshold T, fixed in our experiment to 12.  

otherwisenynyroundnx

Tnynyifnx
nx

4/)'1'(

)',1'max(
'

     (9) 

Since the values in the following resolution levels 

may not have the same dynamic range, the generalized 

prediction is modified to handle an arbitrary range of 

values. The algorithm is the same, but the range of values 

has to be sent to the decoder to recover the original data.  

One resolution level is obtained first by filtering every 

row and then only the columns of the approximation 

image. This leads to a three-band decomposition. The 

method is applied to 7 images and compared to two non-

adaptive wavelet filters: the Haar and the LeGall wavelet. 

The decompositions are followed by the SPIHT coder [7]. 

The resulting bit-rates for two resolution levels are shown 

in Table 1. For the tested images, the proposed discrete 

generalized lifting scheme performs around 4.5% better 

than the LeGall wavelet. For three decomposition levels, 

results are only slightly better than LeGall's (Table 2). 

This decrease of gain may be due to the update filter 

which may not be the best choice for obtaining a good 

approximate signal for further processing.  

Image / Filter LeGall Haar Bij. Map. 

Lenna 203402 197726 190924 

Cameraman 55100 53064 51889 

Goldhill 52731 57830 52961 

Baboon 235983 243073 222286 

Barbara 212913 223754 216340 

Peppers 212171 217830 198506 

Girl 195707 204320 182367 

Mean 166858 171085 159325 

Table 1. Bytes for lossless coding of each  image using 

LeGall, Haar and our filter for 2 resolution levels.  

Image / Filter LeGall Haar Bij. Map. 

Lenna 159958 171802 158304 

Cameraman 42524 43604 41847 

Goldhill 48545 50727 47948 

Baboon 210328 220855 211209 

Barbara 178565 189619 179588 

Peppers 172529 180646 172876 

Girl 149062 160443 145840 

Mean 137359 145385 136802 

Table 2. Results for 3 resolution levels.  

7. CONCLUSIONS AND FUTURE WORK

A framework for adaptive generalized lifting has been 

proposed. We have focused in particular on the discrete 

case. Initial results for lossless image compression are 

promising. Adding a final update step should lead to 

improve performance for any number of resolution levels. 

Our current work centers on defining a suitable 

generalized update. Moreover, we are studying how to 

increase the support of the generalized update and 

prediction as well as defining 2D schemes.  
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