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ABSTRACT

We introduce the discrete triangle transform (DTT), a non-separa-
ble transform for signal processing on a two-dimensional equis-
paced triangular grid. The DTT is, in a strict mathematical sense,
a generalization of the DCT, type III, to two dimensions, since
the DTT is built from Chebyshev polynomials in two variables in
the same way as the DCT, type III, is built from Chebyshev poly-
nomials in one variable. We provide boundary conditions, signal
extension, and diagonalization properties for the DTT. Finally, we
give evidence that the DTT has Cooley-Tukey FFT like algorithms
that enable its efficient computation.

1. INTRODUCTION

Recent research has shown that the 16 types of discrete cosine and
sine transforms (DCTs and DSTs), can, like the discrete Fourier
transform (DFT), be characterized in the framework of polyno-
mial algebras in one variable [1, 2]. The polynomial algebra for a
DCT or DST explains the interaction between the underlying sig-
nal model, its boundary conditions (b.c.), its signal extension, and
gives easy access to the transform’s properties, e.g., a characteriza-
tion of the matrices diagonalized by it. Further, and perhaps most
importantly, it provides the means to concisely derive the trans-
form’s known and even new [3] fast algorithms by manipulating
the polynomial algebra rather than the matrix entries.

The polynomial algebras associated with the DCTs and DSTs
are built in different ways from Chebyshev polynomials in one
variable. The underlying signal model in each case can be visu-
alized by an undirected line-shaped graph with loops at each side
representing the specific b.c. For example, for the DCT, type III,
this graph is given in Fig. 1 and will be explained later. (For the
DFT, the analogous graph is the well-known directed graph arising
from an n-gon, which captures the cyclic b.c.)
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T0 T1 T2 Tn−3 Tn−2 Tn−1

Fig. 1. Signal model associated with the DCT, type III, with alge-
bra C[x]/Tn(x) and basis b = (T0, . . . , Tn−1).

For two-dimensional signals (e.g., images) Kronecker (ten-
sor) products of one-dimensional transforms are usually used, for
example DCT(III) ⊗DCT(III), i.e., these transforms are separable.
The underlying polynomial algebra is accordingly just the tensor
product of the one-dimensional algebras and the associated graph
is the direct product of the one-dimensional graphs, e.g., a torus for
the 2-d DFT or, for the 2-d DCT(III), the graph in Fig. 2 (shown
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for size 8 × 8), which is a square grid; each inner point has four
neighbors.
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Fig. 2. Signal model associated with the 2-d DCT, type III, with
algebra C[x, y]/〈Tn(x), Tn(y)〉 = C[x]/Tn(x) ⊗ C[y]/Tn(y).

In this paper, we present a different method that yields a non-
separable two-dimensional transform using the Chebyshev poly-
nomials in two variables, which are far less well-known than their
one-dimensional counterparts. Analogous to the DCT(III)’s one-
dimensional polynomial algebra, we construct a two-dimensional
polynomial algebra, which, as it turns out, provides the structure of
a triangular grid with simple b.c., and in which each inner point has
six neighbors, see Fig. 3 (the details are explained later). Thus, we
call the associated transform discrete triangular transform (DTT).
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Fig. 3. Signal model associated to the DTT with algebra
C[x, y]/〈Cn(x, y), Cn(x, y)〉.

Organization. In Section 2 we give the necessary background
of polynomial algebras and transforms in one variable and develop
the special case of the DCT, type III, in Section 3. Section 4
briefly discusses two-dimensional polynomial algebras, including
the non-separable case. In Section 5 we derive the DTT in analogy
to Section 3. We discuss the DTT’s properties and show how to
derive a Cooley-Tukey FFT like algorithm.
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2. POLYNOMIAL ALGEBRAS AND TRANSFORMS:
ONE VARIABLE

In this section we provide the mathematical background on poly-
nomial algebras in one variable and their associated polynomial
transforms. This theory provides the foundation for understand-
ing the DFT, the DCTs and DSTs, their properties, their associated
signal models, and their fast algorithms [1, 2]. The particular case
DCT, type III, will be explained in Section 3.

Algebra. A vector space A that also permits multiplication
of elements such that the distributive law holds is called an alge-
bra. Examples include the set of complex numbers C and the sets
C[x] or C[x, y] of complex polynomials in one or two variables,
respectively.

Polynomial algebra. Let p(x) be a polynomial of degree
deg(p) = n. Then, A = C[x]/p(x) = {q(x) | deg(q) < n},
the set of residue classes modulo p, is an n-dimensional algebra
with respect to the addition of polynomials and the multiplication
of polynomials modulo p. We call A a polynomial algebra.

Polynomial transform. We assume that A = C[x]/p(x)
and that p(x) has pairwise distinct zeros α = (α0, . . . , αn−1).
Then, the Chinese Remainder Theorem (CRT) decomposes A into
a Cartesian product of one-dimensional polynomial algebras as

C[x]/p(x) → C[x]/(x − α0) ⊕ . . . ⊕ C[x]/(x − αn−1),

q(x) �→ (q(α0), . . . , q(αn−1)). (1)

The right hand side of (1) is called the spectrum ofA = C[x]/p(x)
and the spectrum of q ∈ A, respectively. We choose an arbitrary
basis b = (p0, . . . , pn−1), deg(pi) < n, for A, and bk = (x0) as
the basis for C[x]/(x− αk), 0 ≤ k < n. Then the decomposition
in (1) is given by the polynomial transform

Pb,α = [p�(αk)]0≤k,�<n. (2)

which has as entries the projections of p� ∈ b onto the spectrum
C[x]/(x − αk), 0 ≤ k < n: p�(x) ≡ p�(αk) mod (x − αk).

Shift and diagonalization property. Let q(x), r(x) ∈ A =
C[x]/p(x). Because of x(aq(x)) = axq(x), a ∈ C, and the dis-
tributive law x(q(x)+ r(x)) = xq(x)+xr(x), the multiplication
by x is a linear mapping in A, and thus, w.r.t. a chosen basis b, is
represented by a matrix Mx. We call x the shift in A (with basis
b) and Mx its matrix version. We will visualize the signal model
associated to a polynomial algebra by the graph defined by Mx.
Further, Mx is diagonalized by Pb,α, namely

Pb,α · Mx · P−1
b,α = diag(α0, . . . , αn−1).

Fast Algorithms. There are various ways of deriving fast al-
gorithms for a polynomial transform [1]. In each case, the algo-
rithms are derived by decomposing the underlying algebra in steps,
rather than manipulating the transform’s matrix entries. In [3] we
have shown that Cooley-Tukey FFT type algorithms are obtained
in the special case where p(x) = q(r(x)) decomposes into two
polynomials q and r. This was used to provide a simple derivation
of the Cooley-Tukey FFT and its counterparts for the DCTs of type
III and II, which have not been known before.

3. EXAMPLE: DCT, TYPE III

We characterize the DCT, type III, in the above framework.

Chebyshev polynomials (one variable). First we need to in-
troduce the Chebyshev polynomials in one variable [4], which are
recursively defined by

T0 = 1, T1 = x, Tn = 2xTn−1 − Tn−2, n > 1. (3)

The recursion can be reversed to compute Tn for n < 0. A para-
meterization of Tn is given by

Tn = (un + u−n)/2, x = (u + u−1)/2. (4)

By setting u = ejθ , we obtain the trigonometric form

Tn = cos nθ, x = cos θ, n ∈ Z, (5)

The following properties of the Chebyshev polynomials can be de-
rived from (5):

T−n = Tn, (6)

TkTn = (Tn+k + Tn−k)/2, (7)

Tkm = Tk(Tm), (8)

n zeros of Tn : αk = cos(k + 1/2)π/n, 0 ≤ k < n. (9)

DCT, type III. The DCT, type III, is a polynomial transform
for A = C[x]/Tn(x) with basis b = (T0, . . . , Tn−1). Namely,
since the zeros of Tn are given by (9), and using (5), we get

DCT(III)
n =Pb,α = [T�(cos(k+1/2)π/n)] = [cos �(k+1/2)π/n]

as desired. Knowing that A = C[x]/Tn(x) is the underlying poly-
nomial algebra for the DCT(III), we can easily read off properties
of the associated signal model and the transform itself. We briefly
summarize the most important properties, which will have precise
counterparts for the discrete triangle transform introduced later.

Boundary conditions (b.c.). The basis of A are the polyno-
mials T�, 0 ≤ � < n. Thus, the left boundary is T−1. Using (6),
we get the left b.c. T−1 = T1. Similarly, the right boundary is Tn,
which in A is equal to 0, i. e., the right b.c. is Tn = 0.

Signal extension. The left signal extension associated to A is
given by (6) as

T−� = T�, � > 0, (10)

i.e., symmetric with symmetry point T0. The right signal extension
is obtained by multiplying the right b.c. with T� using (7) to get

Tn+� = −Tn−�, � > 0, (11)

i.e., it is antisymmetric with symmetry point Tn = 0.
Shift. The operation of the shift T1 = x on b is determined by

the recursion in (3), namely xT� = (T�+1 + T�−1)/2, which can
be visualized as

· · · · · · · · •
T�−1

1
2�� •

T�

1
2 �� •

T�+1

· · · · · · · ·
(12)

With respect to the basis b the shift x is given by a matrix Mx.
This matrix Mx is diagonalized by DCT(III)

n .
Visualization of the signal model. Combining the graph seg-

ments in (12) for all � (dropping the 1/2’s) and including the left
and right boundary conditions, we obtain the graph in Fig. 1, which
visualizes the signal model, i.e., the operation of the shift, associ-
ated with A and having Mx as adjacency matrix.

Fast algorithm. Based on property (8) we can derive fast al-
gorithms for DCT(III) [3]. We briefly sketch a special case that
parallels the algorithm for the discrete triangle transform to be de-
rived later.
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Let n = 2m and thus Tn = T2(Tm) by (8). The algorithm
derivation follows the following stepwise decomposition, which
first factorizes the outer polynomial T2(x) = (x−cos(π/4))(x−
cos(3π/4)), then the remaining polynomials of degree m, fol-
lowed by a reordering of the spectrum.

C[x]/T2(Tm)
→ C[x]/(Tm − cos π

4
) ⊕ C[x]/(Tm − cos 3π

4
)

→
⊕

0≤k<m
k≡±1 mod 8

C[x]/(x − cos kπ
2n

) ⊕
⊕

0≤k<m
k≡±3 mod 8

C[x]/(x − cos kπ
2n

)

→
⊕

0≤k<n

C[x]/(x − cos 2k+1
2n

π)

The resulting algorithm has the form

DCT(III)
n = Pn(DCT(III)

m (cos π
4
)

⊕ DCT(III)
m (cos 3π

4
))(DCT(III)

2 ⊗ Im)Bn, (13)

where Bn is an initial base change and the other three factors
(from left to right) correspond to the three steps in the derivation.
Pn is a permutation. The exact form can be found in [3]. The
transforms DCT(III)

m (cos rπ) are “skew” DCT(III)’s, i.e., polyno-
mial transforms for the algebra C[x]/(Tm − cos(rπ)) with basis
b = (T0, . . . , Tm−1). They can be further decomposed similarly
to (13), since Tm−cos(rπ) decomposes if Tm does. The resulting
algorithm for the DCT(III)

n has best-known arithmetic cost [3].

4. POLYNOMIAL ALGEBRAS AND TRANSFORMS:
TWO VARIABLES

The notion of polynomial algebras and transforms (Section 2) can
be extended to the case of two variables. Instead of operating mod-
ulo one polynomial we now require two polynomials, p(x, y) and
q(x, y), in two variables, both of degree n. The polynomial al-
gebra is now written as A = C[x, y]/〈p(x, y), q(x, y)〉. In the
generic case, A is a finite-dimensional vector space and there are
n2 distinct common zeros α = ((µ0, ν0), . . . , (µn2−1, νn2−1) of
p and q. Hence, in analogy to the one-variable case, A is decom-
posed by the Chinese Remainder Theorem as

C[x, y]/〈p(x, y), q(x, y)〉 →
⊕

0≤i<n2

C[x, y]/〈x − µi, y − νi〉

into a Cartesian product of one-dimensional algebras, the spectrum
of A.

If we choose a basis b of A and denote the common zeros by
α then this decomposition is given by the polynomial transform
Pb,α defined as in (2).

Now, the multiplications by x and by y are both linear map-
pings in A. Hence both can be represented by matrices with re-
spect to the basis b. Note that the obtained matrices Mx and My

are both diagonalized by the transform Pb,α. In A we now have
two shifts, x and y, with associated matrices Mx and My , which
are simultaneously diagonalized by Pb,α.

A simple way to construct a polynomial algebra in two vari-
ables is as a tensor product of two copies of a one-variable A =
C[x]/p(x) with basis b and polynomial transform Pb,α, namely

C[x]/p(x) ⊗ C[y]/p(y) ∼= C[x, y]/〈p(x), p(y)〉, (14)

which is called separable. The basis for this algebra is just the
Cartesian product of b with itself, and the polynomial transform

of (14) is the Kronecker product Pb,α ⊗ Pb,α. This construction
is used in signal processing to construct higher-dimensional trans-
forms. Further, the visualizing graph is just the direct product of
the graph for A with itself. For example, Figure 2 shows the graph
for a two-dimensional DCT(III)

8 , arising as a direct product of Fig. 1
with itself, i.e., every row and column in Fig. 2 is a copy of Fig. 1.

The two-dimensional transform introduced next is not separa-
ble.

5. DISCRETE TRIANGLE TRANSFORM

In this section we introduce the discrete triangle transform, which
is built from Chebyshev polynomials in two variables in an analo-
gous way as the DCT, type III, is built from Chebyshev polynomi-
als in one variable. Thus, we chose the following presentation to
parallel Section 3.

To avoid confusion, we denote the Chebyshev polynomials in
two variables by the letter C. Further, if p(x, y) ∈ C[x, y], then
we denote by p(x, y) = p(y, x) the polynomial with reversed ar-
guments.

Chebyshev polynomials (two variables). We define the Che-
byshev polynomials Cn = Cn(x, y) in two variables by the recur-
sion

C−1 = y, C0 = 1, C1 = x,

Cn = 3xCn−1 − 3yCn−2 + Cn−3, n > 1.

The recursion can be reversed to compute Cn for n < 1. Next,
we extend this definition to obtain the full two-dimensional grid of
Chebyshev polynomials Cn,m, for n, m ∈ Z, by setting

Cn,0 = Cn, C0,n = Cn,

Cn,m = (3CnCm − Cn−m)/2. (15)

This definition is a slight modification of the definition in [5].
The following parameterization of Cn,m corresponding to (4)

can be found in [5].

Cn,m(x, y) = 1
6
(unv−m + u−mvn + un+mvm

+ umvn+m + u−n−mv−n + u−nv−n−m), (16)

x = 1
3
(u + v + (uv)−1), y = 1

3
(u−1 + v−1 + uv)/3. (17)

In particular,

Cn = 1
3
(un + vn + (uv)−n), Cn = 1

3
(u−n + v−n + (uv)n).

Substituting u = ejθ , v = ejη yields the analogue of (5).
The following four properties can be derived from (16) and are

the analogue of (6)–(9); (20) is due to [6].

Cn,−m = Cn−m,m, C−n,m = Cn,m−n (18)

CkCn,m = 1
3
(Cn−k,m+k + Cn,m−k + Cn+k,m)

CkCn,m = 1
3
(Cn−k,m + Cn+k,m−1 + Cn,m+k)

(19)

Ckm = Ck(Cm, Cm), Ckm = Ck(Cm, Cm) (20)

n2 zeros of Cn = Cn = 0 (0 ≤ k, � < n) :

(uk, v�) = (ωk
n, ω1+3�

3n ), ωn = e−2πj/n.
(21)

The zeros of Cn = Cn = 0 are pairwise distinct and given in
terms of (u, v) in the parameterization (17).

Discrete triangle transform. We define the discrete trian-
gle transform DTTn×n for input size n × n as the polynomial
transform for the polynomial algebra C[x, y]/〈Cn, Cn〉 with ba-
sis b = (Ck,� | 0 ≤ k, � < n), and list of zeros α = ((αi,j , βi,j) |
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0 ≤ i, j < n), where αi,j and βi,j are determined by (ui, vj) =

(ωi
n, ω1+3j

3n ) in the parameterization of x and y in (17). In other
words, DTTn×n is the n2 × n2 matrix given by

DTTn×n = [Ck,�(αi,j , βi,j)]0≤i,j<n, 0≤k,�<n.

The double index (i, j) is the row index, and (k, �) is the column
index, both ordered lexicographically. Ck,�(αi,j , βi,j) is evalu-
ated by substituting (ui, vj) = (ωi

n, ω3j+1
3n ) in (16).

The smallest example is n = 2. We have C0,0 = 1, C0,1 =
y, C1,0 = x, C1,1 = 1

2
(3xy − 1); the zeros of C2 = C2 = 0, i.e.,

3x2 − 2y = 3y2 − 2x = 0, are given by (in this order)

( 2
3
, 2

3
), (0, 0), ( 2

3
ω3,

2
3
ω2

3), ( 2
3
ω2

3 , 2
3
ω3).

Thus, DTT2×2 is the 4 × 4 matrix

DTT2×2 =

⎡
⎢⎢⎣

1 2
3

2
3

1
6

1 0 0 − 1
2

1 2
3
ω2

3
2
3
ω3

1
6

1 2
3
ω3

2
3
ω2

3
1
6

⎤
⎥⎥⎦ .

Boundary conditions. The basis of A consists of the poly-
nomials Ck,�, 0 ≤ k, � < n, which we assume to be arranged in
a two-dimensional coordinate system. Then the bottom and left
boundary are the polynomials C−1,� and Ck,−1. Using (18),

bottom b.c.: Ck,−1 = Ck−1,1, left b.c.: C−1,� = C1,�−1.

Similarly, the upper and right boundary are the polynomials Ck,n

and Cn,�, respectively. Since in A the equations Cn = Cn = 0
hold, and using (15) and (18), we obtain

upper b.c.: Ck,n = − 1
2
C0,n−k, right b.c.: Cn,� = − 1

2
Cn−k,0.

(22)
Signal extension. The bottom and left signal extensions, re-

spectively, are given by (18) as

bottom: Ck,−� = Ck−�,�, left: C−k,� = Ck,k−�,

which turns out to be symmetric w.r.t. the coordinate axes (see
the visualization below, which requires an angle of 60 degrees be-
tween the coordinate axes). The upper and right signal extensions
are obtained by multiplying (22) with Ck and Ck and using (19):

upper: Ck,n+� = −Ck+�,n−� − C�,n−k−�,
right: Cn+k,� = −Cn−k,�+k − Cn−�−k,k.

Shift. We have two shifts, x and y. Their operation is a special
case of (19) for k = 1 and given by

xCk,� = 1
3
(Ck−1,�+1 + Ck,�−1 + Ck+1,�)

yCk,� = 1
3
(Ck−1,� + Ck+1,�−1 + Ck,�+1)

The shifts can be visualized as follows:

��

�

�

Ck,�Ck−1,�

Ck+1,�−1

Ck,�+1

1
3

1
3

1
3

� �

�

�

Ck,� Ck+1,�

Ck,�−1

Ck−1,�+1

1
3

1
3

1
3

With respect to the basis b, the shifts x and y are given by matrices
Mx and My , respectively. The DTT simultaneously diagonalizes
these matrices.

Visualization of signal model. Combining the above graph
segments (dropping the 1/3’s) and including the boundary condi-
tions yields the graph in Fig. 3 (shown for size 8×8), which visual-
izes the signal model associated to A. Note that the grid naturally
becomes triangular to preserve the equidistance of the shifts. The
graph encodes the left and bottom b.c. analogous to Fig. 2 by addi-
tional small arrows emanating from these boundaries. The upper
and right b.c. connect to the left and bottom boundary, respectively.

Fast algorithm. Based on the decomposition property (20) of
Chebyshev polynomials in two variables, we design a fast algo-
rithm for the DTTn×n. Due to space limitations we only state the
decomposition of the algebra and the corresponding factorization
of the transform.

C[x, y]/〈C2(Cm, Cm), C2(Cm, Cm)〉
→ C[x, y]/〈Cm − 2

3
, Cm − 2

3
〉

⊕C[x, y]/〈Cm, Cm〉
⊕C[x, y]/〈Cm − 2

3
ω3, Cm − 2

3
ω2

3〉
⊕C[x, y]/〈Cm − 2

3
ω2

3 , Cm − 2
3
ω3〉

→
⊕

0≤i,j<m

C[x, y]/〈x − α2i,2j , y − β2i,2j〉

⊕
⊕

0≤i,j<m

C[x, y]/〈x − α2i,2j+1, y − β2i,2j+1〉

⊕
⊕

0≤i,j<m

C[x, y]/〈x − α2i+1,2j , y − β2i+1,2j〉

⊕
⊕

0≤i,j<m

C[x, y]/〈x − α2i+1,2j+1, y − β2i+1,2j+1〉

→
⊕

0≤i,j<m

C[x, y]/〈x − αi,j , y − βi,j〉

The resulting algorithm has the form

P (DTTm×m( 2
3
, 2

3
)⊕DTTm×m(0, 0)⊕DTTm×m( 2

3
ω3,

2
3
ω2

3)

⊕ DTTm×m( 2
3
ω2

3 , 2
3
ω3))(DTT2×2 ⊗ Im2)B (23)

where B is an initial base change which can be performed using
O(n) operations and P is a permutation. The exact form will be
derived elsewhere.
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