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ABSTRACT

In this paper, we proposed a new formulation of directional filter
banks (DFBs). By using a non-uniform and non-separable filter
bank, a critically sampled multiresolution directional image rep-
resentation can be obtained efficiently. The resulting DFB yields
non-uniform frequency division which composes of one lowpass
channel with a decimation factor of one-fourth and six highpass di-
rectional channels with a decimation factor of one-eighth. It over-
comes the limited directional selectivity of the separable wavelets
and limited resolution of the conventional DFB. The lowpass chan-
nel can be used to obtain multiresolution representation by sim-
ply re-iterating the same DFB decomposition. On the other hand,
the directional subbands can be further refined by simply apply-
ing a two-channel DFB at each highpass channel. A simple design
method yielding near orthogonal uniform and non-uniform mul-
tidimensional filter banks is discussed, and, finally, a numerical
experiment is presented to demonstrate potential of the new image
basis.

1. INTRODUCTION

Wavelets and filter banks have been used effectively in many sig-
nal processing applications [1]. An advantage of using wavelet
bases instead of Fourier bases is due to approximation power of
wavelet series in signal with singularity since it would take a larger
number of Fourier coefficients than wavelet coefficients to rep-
resent a signal with discontinuities. Typically, one constructs a
two-dimensional (2D) wavelet by taking the tensor product of one-
dimensional (1D) wavelets. This 2D wavelet is still effective at
approximating point singularity (e.g. points in an image), but it is
not very efficient for line singularity (e.g. edges in an image). This
fact was notified by many researchers [2, 3], and therefore finding
a more effective basis for images is currently a very active research
area.

The directional filter bank (DFB) originally introduced in [4]
has been proven to be effective in processing images with direc-
tional information [5, 6]. The DFB decomposition shares two im-
portant properties with the traditional discrete wavelet transform
(DWT), namely maximally decimated and perfect reconstruction
(PR). Although the DFB in [4] can extract directional informa-
tion into 2n subbands (see Figure 1 (b)), the decomposition does
not have lowpass or highpass subbands, and DC energy is spread
among all the directional subbands. Usually, the DC energy is not
divided evenly due to practically design limitation.

In [7], Do et al. propose a pyramidal DFB in order to imple-
ment the contourlet transform, a discrete version of the curvelet
transform [8]. The proposed structure is a combination of the
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Figure 1: Frequency partition of the filter banks: (a) DWT,
(b)conventional DFB, (c) new uniform DFB and (d) nonuniform
DFB.

Laplacian pyramid and the DFB, and is oversampled by a fac-
tor of 4/3. Recently, a maximally decimated version is proposed
in [9], which yields more directional subbands at higher frequency.
However, the problem of dividing the DC component is still not
resolved because there are four lowpass directional subbands at
DC. In addition, the proposed filter bank is implemented by a bi-
nary tree structure with very large support filters, which can lead
to very large support of the overall filters’ impulse responses and
directional error in the reconstructed image.

The paper is organized as follows. In the next section, the
new DFB recently introduced in [10] and its properties are briefly
presented. Limitations of the binary tree structure used in the
construction of the maximally decimated DFBs in [9, 10] are dis-
cussed. An extension to nonuniform decomposition which allows
for multiresolution decomposition is presented in Section 3. In
Section 4, a simple filter design algorithm adapted from [11] for
both uniform and non-uniform cases is discussed. A numerical ex-
periment is presented in Section 5 to demonstrate the potential of
the new DFB, and Section 6 concludes the paper.

Notations: For notation of 2D multirate signal processing, we refer
to [12]. The followings are some special matrices that are used to
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decimate subband images in the paper:

Q =

[
1 1

−1 1

]
, Q2 =

[
2 2

−2 2

]
, D2 =

[
2 0
0 2

]
.

2. THE NEW DIRECTIONAL FILTER BANKS

In [10], we proposed a new DFB (uDFB) with frequency partition
depicted in Figure 1(c) as an alternative to the conventional DFB
in [4] (Figure 1(b)). The uDFB yields a uniform eight-channel
filter bank with corresponding decimation matrix Q2. The signal
is decomposed into two lowpass channels (both connected to DC)
and six other highpass directional channels. According to Fig-
ure 1(c), the lowpass subbands 0 and 4, once appropriately com-
bined as discussed in the next section, can be used to obtain mul-
tiresolution representation, similar to that of the separable DWT
(Figure 1(a)), and the highpass directional subbands 1, 2, 3, 5, 6
and 7 can be used to obtain narrower directional selectivity, while
maintaining critically sampled property.

The uDFB is constructed using a binary tree with three lev-
els as shown in Figure 2(a). According to the passband supports
shown in the tree structure, it can be shown that the filter shapes
satisfy the admissibility and permissibility conditions [13] with re-
spect to the decimation matrix Q2. In the conventional DFB [4],
the number of frequency wedges is fixed, and it is difficult to
achieve a multiresolution decomposition since there is no specific
lowpass subband and/or further divide for finer directions while
maintaining the critical sampling. The uDFB, however, can be cas-
caded with two-channel filter banks with simple passband shape to
obtain arbitrary (2n) number of directional subbands at different
resolutions.

One design problem with the binary tree is the effect of fre-
quency ‘scrambling’ [cite Do], which means that the aliased high
frequency component will be next to the lowpass component after
decimated. Such a problem occurs in the DFB in [4], and is cor-
rected by using a resampling block in [14]. A similar problem ap-
pears in the implementation of the tree-structured DFB in [9, 10].
In order to illustrate this problem, let us consider the top branch in
the second level of the tree structure in Fig. 2(a) as in Fig. 3. Using
a noble identity [12], it is clear that the equivalent decimation filter
is given by:

H(z) = H
(1)
0 (z)H

(2)
1 (zQ)

H(ω0, ω1) = H
(1)
0 (ω0, ω1)H

(2)
1 (ω0 − ω1, ω0 + ω1). (1)

If this branch is a highpass filter with one zero at DC (one vanish-
ing moment), it is required that H(2)

1 (0, 0) = 0 since H
(1)
0 (0, 0) is

in the transition band of H
(1)
0 (ω0, ω1). This implies that H(±π,±π) =

0, which will severely affect the passband shape of the highpass fil-
ter. Furthermore, some high frequency components will leak into
the lowpass channel after decomposition.

In order to avoid above problem, the uDFB is proposed to be
optimized directly as a uniform eight-channel filter bank as shown
in Figure 2(b). This framework has a number of advantages: (i)
it exploits the permissibility of passband supports to design fil-
ter with good frequency characteristics and regularity requirement
(see Section 4) is possible, and (ii) the size of the impulse response
can be more compact than that from the binary tree structure since
the entire eight channel filters can be implemented directly.
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Figure 2: (a) Uniform eight channels DFB and (b) Non-uniform
seven channels DFB.

3. MULTIRESOLUTION DIRECTIONAL
DECOMPOSITION USING NONUNIFORM DFB

A natural extension to a multiresolution image decomposition us-
ing a filter bank is to reiterate the same filter bank on the lowpass
coefficients. For 1D octave-band multiresolution, the passband
support (bandwidth) of the lowpass filter is one-half of the entire
frequency space, and hence is one-fourth for the 2D case. The
above uDFB has two lowpass subbands (0 and 4), which should be
combined to obtain a decimation factor of one-fourth. One simple
remedy is to use a two-channel PR filter bank (transmultiplexer)
to combine the low pass signals. This approach increases compu-
tational complexity of the design and implementation since addi-
tional filters are used. Moreover, the size of the overall support
of the filter’s impulse response will be less compact. A better ap-
proach is to use a nonuniform filter bank with one lowpass compo-
nent with a decimation matrix D2 of which the decimation factor
is one-fourth as shown in Figure 2(c). The other six directional
subbands remain the same. Since the uDFB satisfies both admissi-
ble and permissible conditions, so does the new nonuniform DFB
(nuDFB). The frequency partitioning of the nuDFB is presented in
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Figure 3: One branch of the tree structure to implement DFB.

Figure 1(d) which is similar to that of the DWT in Figure 1(a) in
that they have the same lowpass frequency support (−π/2, π/2)2.
Instead of decomposing the image details into horizontal, vertical
and diagonal subbands, the nonuniform DFB uses six directional
subbands. This new uniform DFB provides more flexibility in the
decomposition: (i) in order to obtain a (directional) multiresolu-
tion of an image, one can reiterate the entire filter bank on the
lowpass channel (coarse approximation), and (ii) in order to dou-
ble the directional resolution, one can cascade a two-channel filter
bank with fan-shaped passband at the output of each of the high-
pass channels.

4. A DESIGN METHOD OF THE UDFB AND NUDFB

In this section we present a simple design method adapted from [11].
The method allows one to design a near PR orthogonal or biorthog-
onal filter bank only by solving linear equations iteratively. For
convenient, let S = {1, 2, 3, 5, 6, 7} be the set of the indices of
the directional subbands. The design problem can be formulated
as an optimization problem with an objective function:

Φ =
M−1∑
j=0

(∑
n

fj(n)hj(n) − 1

)2

+

M−1∑
j=0

∑
m �=0

(∑
n

fj(n − mQ2)hj(n)

)2

+
M−1∑

j,k=0,j �=k

∑
m

(∑
n

fj(n − mQ2)hk(n)

)2

, or (2)

Φ =
∑
j∈S

(∑
n

fj(n)hj(n) − 1

)2

+
∑
j∈S

∑
m �=0

(∑
n

fj(n − mQ2)hj(n)

)2

+
∑

j,k∈S,j �=k

∑
m

(∑
n

fj(n − mQ2)hk(n)

)2

+
∑
j∈S

∑
m

(∑
n

fj(n − mD2)h0(n)

)2

, (3)

where (2) and (3) are, respectively, for the cases of uDFB and
nuDFB. The objective function mainly consists of two parts con-
stituting the PR property. The first term corresponds to the ‘no-
distortion’ condition while the rest correspond to the ‘aliasing-
cancellation’ conditions [12]. It is clear from (2) and (3) that when

hj (fj) are fixed, Phi is a quadratic function of fj (hj ), which can
be minimized by solving a linear equation

∂Φ

∂fj
= 0

(
∂Φ

∂hj
= 0

)
. (4)

In addition, for orthogonal filter banks, regularity of degree R,
which is the number of zeros at DC of the highpass filters (van-
ishing moments), can be imposed with the following linear con-
straint:

∂r1+r2fj(z1, z2)

∂z1
r1∂z2

r2

∣∣∣
z1,z2=0

= 0(
∂r1+r2hj(z1, z2)

∂z1
r1∂z2

r2

∣∣∣
z1,z2=0

= 0

)
. (5)

where r1, r2 be non-negative integers and r1+r2 < R. The above
conditions in (5) serve as extra constraints in the optimization, and
can be simultaneously solved with (4) using Lagrange multiplier.
The design procedure can be carried out by iteratively solving (5)
and (4) while hj (fj) are fixed. The obtained hj (fj ) are then fixed
and used to optimize for fj (hj ).

During the iteration, orthogonality of the filter bank can be
obtained by imposing that each synthesis filter is the time reverse
version of the corresponding analysis filter, i.e. fj(n) = hj(−n).
In order to converge to an orthogonal solution, the averages of the
analysis and synthesis filters is used to update the calculated filter
coefficients, i.e.

fn
j (n) =

hn−1
j (n) + fn−1

j (n)

2(
hn

j (n) =
fn−1

j (n) + hn−1
j (n)

2

)
. (6)

The design procedure can be summarized as follows:

1. Initialize the analysis filters h0
j with appropriate passband

supports.

2. Solve for the synthesis filters f̂0
j by solving the above lin-

ear equations (5) and (4). Update f0
j by setting f0

j (n) =
h0

j (−n)+f̂0
j (n)

2
.

3. Fix f0
j and solve for ĥ1

j using the linear equations (5) and

(4). Update h1
j by setting h1

j (n) =
ĥ1

j (n)+f0
j (−n)

2
.

4. Repeat the same above process for fi
j and hi

j until the cost
function is lower than a defined level.

Remarks: Although the design method is simple and straightfor-
ward, it has some limitations. First, the method is not robust and
the convergent rate is strongly dependent on the initialization fil-
ters. Second, the cost functions do not impose any frequency re-
sponse characteristics (except from the regularity conditions) and
hence the resulting filters will also be dependent on the initializa-
tion. Third, the algorithm is not guaranteed to converge to a PR
solution at the optimality, i.e. Φ = 0.

5. NUMERICAL EXPERIMENT

In this experiment, approximation performances of the DWT and
the nuDFB are compared. The two filter banks are both orthogonal
and have identical lowpass filter h0, which is the Daubechies filter
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Table 1: SNR of the reconstruction images in the high frequency
subbands after a number of coefficients have been retained for the
cases of DWT and nuDFB.

# coefficients DWT nuDFB

32 0.058 dB 0.077 dB
64 0.104 dB 0.132 dB
128 0.177 dB 0.223 dB
256 0.314 dB 0.368 dB
512 0.551 dB 0.612 dB
1024 0.947 dB 0.988 dB

of length 4. Hence the total energy in the highpass subbands is the
same for both cases. An image is decomposed at one level using
the filter banks and, for each decomposition, a number of sub-
band coefficients are retained. These coefficients are determined
by their magnitudes in order to minimize the reconstruction er-
ror. Table 1 tabulates signal-to-noise ratio (SNR), which compares
the reconstruction error after a number of highpass coefficients are
retained to the reconstruction when all highpass coefficients are
used. Note that the lowpass coefficients are not used in the cal-
culation of SNR. It is evident that, with a same small number of
coefficients, the nuDFB coefficients provide a better approxima-
tion of the image than the DWT coefficients. Figs. 4 (a) and (b)
show the reconstructions of edges of the ‘Barbara’ image when
1024 highpass coefficients are retained. It is clear that the DWT
represents edges in the image by many points appearing continu-
ously, while the nuDFB approximates by very few coefficients at
the subbands perpendicular to the directions of the edges.

(a) (b)

Figure 4: Details of the Barbara image reconstructed from 1024
coefficients at high frequency subbands using (a) DWT and (b)
nuDFB.

6. CONCLUSION

This paper presents a maximally decimated, multiresolution and
multidirectional filter bank. It is shown that when the 2D uniform
non-separable filter bank is constructed using a binary tree, ad-
ditional constraints on the passband supports of the filters must be
satisfied. Hence by directly generating all the filters, the filter bank
can be obtained with better characteristics such as regularity and
vanishing moments. The proposed filter bank is further extended
to a non-uniform subbands by combining the two lowpass filters.
This extension is suitable for multiresolution image decomposi-
tion, and can be used to obtain a pyramidal directional represen-
tation. A simple design method is discussed where orthogonality

and regularity can be easily imposed. A numerical simulation is
presented and shows that the proposed DFB yields better perfor-
mance in signal compression than the traditional DWT.
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