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ABSTRACT

The computational complexity of simulated annealing
makes it an impractical tool in many applications, partic-
ularly for complex, non-local models on very large 2D and
3D domains as desired in many scientific contexts. In partic-
ular, it is very difficult to produce large scale structure from
a fine, pixellated lattice. Thus a hierarchical approach is in-
tuitively attractive. However, existing approaches are few
and limited. Motivated by a current problem in porous me-
dia, we develop a hierarchical approach to complex model
sampling. In experiments, this approach results in 1–2 or-
ders of magnitude computational gain, and significant gains
in convergence as well.

1. INTRODUCTION

In this work we are interested in the problem of compu-
tational practicality for simulated annealing in large phase
spaces. We choose a motivational application: generation
of samples of binary porous media images (e.g. Fig.1), the
importance of which is discussed in [1].

There are two central ideas discussed in this paper.
The first key idea is that insights from renormalization ap-
proaches in Markov Random Field (MRF) sampling suggest
a hierarchical approach to related problems. The second key
point is that while the scaling behaviour of local-interaction
models is difficult to analyze (e.g. difficult to renormalize),
there are other models involving non-local quantities that
are inherently rescaleable.

We describe how our problem relates to various parts of
the annealing literature, and propose a hierarchical anneal-
ing approach. Several models are discussed, and numerical
experiments reported. These empirical results show signifi-
cant improvement over approaches in the porous media lit-
erature [1, 2].

Supported in part by NSERC research grants (P.F. and E.R.V) and a
NSERC PGS scholarship (S.K.A). M. Ioannidis was helpful in providing
porous media images.
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Fig. 1: Binary porous media examples

2. ANNEALING APPROACHES

Simulated Annealing [3] has seen a vast range of applica-
tions in image synthesis and estimation. Its strength lies
in flexibility in choice of prior and measurement models.
However there is a drawback in computational complexity
— particularly so for large domains and complex models.
The overwhelming majority of SA implementations involve
a single (flat) lattice, which is slowly annealed by brute
force. In many applications, this is computationally imprac-
tical.

The reason for this computational cost is that, by their
very nature, local MRF models are subject to a phenomenon
of critical slowing down. The issue essentially is this: all
structure in the model comes from local interactions, hence
when longer scale (i.e. non-local) structure exists, changes
in this structure can only be made after many local interac-
tions. At phase transitions (the crossing of critical temper-
atures), non-local structure appears in the sample. Thus it
is at exactly these points where significant changes to the
energy become increasingly more expensive (more local in-
teractions needed), slowing down convergence. This is a key
issue to be attacked if one wishes to accelerate an annealing
process.

To be sure, hierarchical approaches have been proposed.
With few exceptions, these fall into two classes:

1. Hierarchical estimation assuming a dense first scale,
and

2. Region-based sampling.
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Region-based sampling (e.g. clustering) has been suc-
cessfully applied to address the computational problem in
local models, but it is specialized to Ising (or Ising-like)
models at or near the critical temperature, where Ising ex-
hibits the most interesting behaviour (phase change) and
structures. Our models are quite different from the Ising
class, and exhibit complex structure down to very low tem-
peratures (i.e. for long temperature scales as we anneal) so
standard region-based methods do not apply.

Many authors have discussed methods to use a hierar-
chical approach to accelerating image estimation. In partic-
ular a “label” pyramid is build above the image at the finest
scale [4, 5]. However. given a dense image at the finest
scale, the estimation problem is very well-conditioned, and
converges well with even only the most rudimentary infor-
mation from the coarser scales. Indeed, in most cases the
coarse scales are not even annealed.

Because our scientific problems of interest may involve
sparse data (or, indeed, no data in the case of pure sam-
pling), the former approaches are not effective. We seek a
hierarchical approach in which the large-scale structure is
efficiently determined at coarse scales, leaving only more
detailed refinements at finer scales.

Our proposal is to apply the central idea of renormaliza-
tion theory to help reduce the computational cost of anneal-
ing. The key insight that we bring out of renormalization
methods is this: the effective temperature for a given fea-
ture size is scale dependent. For some temperature at some
intermediate scale, coarser scales are cold (meaning that the
large, coarse features are ‘frozen’), and finer scales are hot
(meaning that the tiny features, not resolved at the interme-
diate scale, are rapidly changing). This implies that we need
concentrate on only one intermediate scale at a time.

Some related work has been done, particularly in renor-
malization for classic image estimation problems [6]. How-
ever there are some interesting open questions, and our
approach is distinct from existing research on hierarchical
structures and accelerated annealing.

3. HIERARCHICAL SAMPLING

We are interested in simulated annealing, which is formal-
ized as sampling from a Gibbs random field with density:

πβ(x) =
e−βE(x)

Zβ
, (1)

where β = 1/T is the inverse temperature parameter. The
partition function Zβ is not evaluated in simulated anneal-
ing. The process of doing this on a flat scale is usually based
on [3]. We wish to approach this in a hierarchical way, by
rescaling the model at appropriate temperatures.

The question then is: At any given level in this mul-
tiscale hierarchy, what image features are represented? In

(a) 512 × 512 (b) 128 × 128

(c) 64 × 64 (d) 32 × 32

Fig. 2: A porous media image viewed at several resolutions:
How do local and non-local features scale?

particular, we wish to work ‘down’ a hierarchy, from coars-
est to finest resolution. How may we anneal in such a way
that features are represented at the current level, and can be
meaningfully projected to the the next finest level? Figure 2
illustrates this point.

Our approach to hierarchical annealing is as follows.
Consider a hierarchy {Xn}M

n=0 of coarse-grainings of the
configuration space where each increase in level represents
decimation by a factor of two (X0 is finest resolution). At
each higher level in the hierarchy, the energy function for
that level is Es. We denote projection (coarse to fine) from
level s to level s − 1 as Ps−1. Annealing is performed as
shown in Algorithm 1.

Algorithm 1 Hierarchical Annealing
k ⇐ 0
for s = S to 0 do

while Es(Xs) not converged do
β ⇐ 1/Tk

Xs ⇐ sample πβ { draw a sample from πβ}
k ⇐ k + 1

end while
Xs−1 ⇐ Ps−1(Xs) {map to next finer resolution}

end for

There are two sources of computational benefit in this
approach. First, the size of the coarse domains is small,
allowing rapid iterations of the sampler. Second, as sug-
gested in the previous section, at an intermediate scale the
algorithm needs to iterate only long enough to allow rela-
tively local structure to converge, since the larger structures
converged at coarser scales. Hence we work in a decimated
configuration space (at less computational cost) until some
appropriate time, and then project onto the next larger space
and continue annealing.

Annealing with too low an initial temperature (not en-
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ough energy) approaches a greedy algorithm, prone to find-
ing local minima. On the other hand, too high an energy
may destroy larger structures. Since this holds true at any
level in the hierarchy, clearly there is a delicate balance in
achieving computational gains while retaining good opti-
mization performance.

An analysis of the interactions between the annealing
(cooling) schedule, the scale-to-scale projection, and the
convergence of the stochastic sampler is not straightfor-
ward. At present, we rely on heuristic rules to determine
the cooling/projection schedule: at each level the process
is annealed until it has converged (in the sense of energy).
This heuristic is not optimal in any sense, although, the ex-
periments which follow show it to be effective.

4. MODELS

The statistical sampling methods discussed here are charac-
terized in terms of an energy function E in (1) . When con-
sidering a hierarchical approach, the key problem is how to
define it at coarser scales. The canonical example of a local
MRF model on a lattice of binary values is the Ising model.
The usual simplified form (with no external field) can be
written as:

EIsing = J
∑

[i,j]

σiσj . (2)

where J is a coupling coefficient, σn is the spin of the nth

particle, and summation is taken over [i, j], adjacent hori-
zontal and vertical neighbours only.

The difficulty in considering hierarchical annealing with
this model is to decide how J ought to scale. As previously
described, the nature of this model leads to difficulties in
the analysis. Because of the importance of the Ising model,
a lot of effort has been spent on this question, and several
approaches have been used with success, but they were not
easily found.

In contrast, some non-local descriptions are inherently
rescaleable. In the motivating application of porous me-
dia, two very important characterizations of structure are
the two-point correlation function, and the distribution of
chord lengths.

We are considering binary dense/pore structures [2] in
an image. We can denote Is(x) for the index function for
our binary image at scale s, (yielding 0 for pore, and 1 for
density). If we let < · > denote a spatial average over the
image, then the average density φ (or “one-point” correla-
tion can be denoted as

Ss(r) =<Is(x + r)>= φs . (3)

Similarly, two-point correlation:

Ss(r1, r2) =<Is(x + r1)Is(x + r2)> . (4)

Notationally, let us take ·̂ to denote trained/target val-
ues. Furthermore, denote the lattice size of the image at a
particular scale s as O(s) (then for initial lattice of N×N
O(s) = N/2s).
One-point energy function: With the above notation, φ̂s

denotes target values for the image density at scale s and
we can express an energy function for this scale based on
one-point correlation as

Es
1 = ‖φ̂s − φs‖ . (5)

Two-point energy function: Furthermore, if we restrict
ourselves to the horizontal and vertical directions (to reduce
computations), two-point correlation gives us

Es
2 =

O(s)/2∑

r=1

‖Ŝs(0, r)−Ss(0, r)‖+‖Ŝs(r, 0)−Ss(r, 0)‖ .

(6)
Chordlength energy function: Another interesting mea-
surement is the distribution of chord-lengths in the image
[2]. If we again restrict ourselves to the horizontal and ver-
tical directions again, this is essentially the distribution of
length of contiguous “runs” of density pixels in these direc-
tions. Denoting these probability mass functions as ph

C and
pv

C for the horizontal and vertical directions, respectively,
we may construct an energy function:

Es
3 =

O(s)∑

n=1

‖p̂h
C(n) − ph

C(n)‖ + ‖p̂v
C(n) − pv

C(n)‖ . (7)

Here the sample pmf’s are estimated by histograms from the
image data.
Local histogram energy function: A similar difference-
of-pmf’s function arises from the approach of histogram-
ming local neighbourhoods described in [7, 8]. This method
has the properties of being very cheap to compute, and
constraining local pixel configurations. Distributions are
described for neighbourhoods surrounding both white and
black pixels. So if we denote these distributions as pw

H and
pb

H , and let the neighbourhood size be b, we can define an
energy function:

Es
4 =

2b∑

n=1

‖p̂w
H(n) − pw

H(n)‖ + ‖p̂b
H(n) − pb

H(n)‖ . (8)

There are a couple of things to note in the above: The
distance used in the various energy functions is not speci-
fied — there are several possibilities in most cases. In the
numerical experiments reported here, the l2-norm is used,
but the best choice is not clear.

Since we can look at separate scales, and also mixtures
of these models, the general formulation will be

Es(x) =
∑

i

ciEs
i (x) ci > 0 ∀i . (9)
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It is interesting to consider the scale-dependent be-
haviour of such models. For example, consider a proposed
model of

E = (E1 + E2) + αE3 . (10)

The mixing parameter α can be seen to balance fine be-
haviour against coarse (if we set up the E’s correctly). It is
intuitive that some energy functions may be more relevant
at some scales than others.

5. RESULTS & CONCLUSIONS

Experiments have been run with different data sets and en-
ergy functions. The following results are for images with
final resolution of 256 × 256 pixels. The included exam-
ple shows a real sandstone image 3(a) from one training set,
and a sample 3(b) from the hierarchical method describe
here using a mixture of two-point and chordlength energy
functions (i.e. E = E2 + αE3)

(a) (b)

Fig. 3: real (a) and sampled (b) porous media images

For typical annealing runs on this data, a comparison of
sampling performance for flat and hierarchical annealing is
shown in Figures 4(a) and 4(b).
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Fig. 4: Convergence curves for flat and hierarchical sam-
pling. Energy vs. (a) Temperature and (b) Computations

Figure 4(a) demonstrates good convergence of the hi-
erarchical annealing sample. Figure 4(b) shows the large
computational gain made by using this approach.

In these graphs, the two processes used the same cool-
ing schedule (geometric, with Tn+1 = 0.9Tn) and all ener-
gies are measured at the finest scale (by projection, in the
hierarchical case). Note that this constrains the hierarchi-
cal annealing in a way that may not be optimal. Indeed,

the convergence of the hierarchical process shows one ar-
eas that are not monotonically decreasing in energy — this
seems to be an artifact of the cooling schedule’s interaction
with projection in the hierarchy.

Following these outstanding gains in convergence and
computational cost, we are motivated to pursue this ap-
proach further. Additional discussion of the work in
progress will appear at the website:
http://ocho.uwaterloo.ca/˜sk2alexa

Ongoing directions for this work include further analy-
sis of the hierarchical cooling schedule. We are also inter-
ested in analysis of random sampling by annealing to non-
zero temperatures. At final temperatures T > 0, metastable
structures will be present and sampling time potentially re-
duce greatly . However, in this case we are no longer sam-
pling from the null space of a model, and the hierarchical
annealing process is more subtle.

We have demonstrated concrete benefits to the hierar-
chical annealing approach, and also sketched some of the
many interesting directions in which this work can be taken.
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