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ABSTRACT

In this paper we propose a novel framework for con-
structing and using a shape prior in a curve evolution frame-
work. The prior shape information is captured through shape
distributions, which are histograms of features derived from
the shape boundary. The resulting prior captures perceptual
shape similarity, is robust to small sample size, and flexible.
We further derive a curve evolution force that corresponds
to this prior. This enables us to use this prior to perform
tasks such as mean shape calculation and image segmenta-
tion within a curve evolution framework.

1. INTRODUCTION

The use of prior shape information is indispensable in many
image processing applications, such as image segmentation,
tracking, classification, etc. Different approaches have been
taken to capturing such prior information. For example,
one common approach uses principal component analysis
of training data to obtain a set of shape representation func-
tions [1] describing allowable shape variations. A recent
different approach uses an angle function parameterization
coupled with a distance measure on a shape manifold to
construct deformable shape models [2]. Another approach
to the inclusion of prior shape information is based on ex-
plicit modeling and extraction of component parts [3]. Un-
fortunately, these methods can be sensitive to the chosen
boundary parameterization and the resulting models may be
difficult to generalize to unseen shapes.

Typical curve evolution-based segmentation methods in-
corporate a penalty on boundary length, which can be viewed
as a shape prior favoring objects with shorter boundaries.
Such a prior is intrinsic and generic, but is overly simplis-
tic, resulting in a trade-off between boundary smoothing and
suppression of salient shape structure through, for example,
the rounding off of corners and shrinking of object size [4].
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There have been several attempts to extend this type of
prior. An alternative data-driven prior shape model was pro-
posed in [5]. A model of the distribution of curvature and
intensity with respect to a segmented curve was found from
training data. This spatially stationary model was then used
in a maximum a posteriori (MAP) formulation to segment
an image. Although giving better results than generic curve
length penalty priors, this approach still tends to suppress
salient structures. The reason is that the stationary prior
coupled with the MAP criterion attempts to drive the curva-
ture at every point on the curve to the same, constant value
corresponding to the mode of the distribution.

Our goal is to overcome the drawbacks of existing meth-
ods of constructing shape priors for use in a curve evolution
context. We aim for a compromise between the focusing
ability of the prior model, its generalizability, and its cost
to find and implement. Motivated by the ideas in [6, 7], we
construct a shape boundary prior as an energy which penal-
izes the difference between the entire feature distributions
of a given curve and those of the prior. This new formula-
tion is our first contribution.

Unlike the conventional curve length penalty, our new
energy depends on the segmenting curve in a non-local way,
making the calculation of the minimizing flow challenging.
We propose an efficient solution of this problem by con-
structing a distribution matching PDE as our second con-
tribution. The overall result is a new flexible and tractable
approach to the inclusion of prior shape information into
curve-evolution-based segmentation. We present prelimi-
nary results of applying our method to two problems of in-
terest, namely mean shape calculation and image segmenta-
tion.

2. PRIOR FORMULATION

Let Φ denote a continuously valued feature (for example:
curvature) defined on the space Ω (for example: arc length
along the curve) and let λ be the value of the feature (for
example: the value of curvature). For simplicity, we may
assume that λ ∈ [0, λmax]. We define the “distribution
function” H(λ) be the fraction of the space Ω with val-
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ues greater than λ: H(λ) =
∫
Ω{Φ(Ω)>λ}dω∫

Ω dω
. Note that

H(λ) is related to cumulative distribution function (CDF):
H(λ) = 1 − CDF (λ). We then define our prior energy as:

EC =
M∑
i=1

wi

λmax∫

0

[
Hi(C, λ) − Hi

∗(λ)
]2

dλ (1)

where M is the number of features taken into account,
Hi(C, λ) and H i

∗(λ) are the distribution functions of the ith

feature of the curve and prior, respectively, and wi weighs
the importance of each feature. The prior feature distribu-
tion functions H i

∗(λ) can be obtained in a variety of ways,
including prior specification based on intuition or estima-
tion from training data, as we elaborate below. In general,
we do not require that H i

∗(λ) correspond to the feature dis-
tribution of any particular curve.

2.1. Image segmentation

The energy (1) can be used in a number of interesting ways.
First, we consider the problem of curve-evolution-based im-
age segmentation. We define the curve C segmenting an
object as the minimizer of the following functional:

C∗ = argmin
C

[Ed + αEC ] (2)

where Ed is a data fidelity term and term EC represents
a prior term on the curve boundary. While a number of
choices are possible, here we take the data fidelity term Ed

to be an image log-likelihood, capturing the expected inten-
sity profile in the direction normal to the boundary, as in
[5].

In most existing curve evolution based approaches the
shape prior term EC simply penalizes the total length of the
curve EC = ||C||, resulting in smooth segmentation bound-
aries. Instead, we will use the energy (1) with the prior fea-
ture distribution functions H i

∗(λ) obtained as the average of
N training shapes Cj : Hi

∗(λ) =
∑N

j=1 Hi(Cj , λ). The use
of this prior will drive the segmenting curve to one whose
feature distributions match the training data.

2.2. Mean shape calculation

As a second application, the proposed framework provides
a natural and interesting approach to the determination of
the average shape C of a collection of N shapes Ci. To this
end, let us use the energy (1) to define a distance between
curves as follows:

d(C,Cj) =

√√√√√
M∑
i=1

wi

λmax∫

0

[Hi(C, λ) − Hi(Cj , λ)]2 dλ

(3)

This distance can be shown to satisfy the triangle inequality
and is thus a metric. Given this distance we can now define
the mean shape using the Karcher mean formula

C = argmin
C

N∑
j=1

d2(C,Cj) (4)

The resulting mean curve C can also be found as the curve
which minimizes the distance to the mean of training data
feature distributions (versus minimizing the mean of the dis-
tances to the individual feature distributions).

3. FEATURES

Any feature representing measures uniformly sampled along
the shape boundary or volume can be used in our frame-
work. The factors governing the choice of features for a
particular problem include: the ability of a chosen feature
set to capture overall shape topology as well as boundary
features and computational tractablity of the resulting opti-
mization problem. In this work we use two features: the set
of all inter-point distances for a uniformly sampled bound-
ary and the set of curvatures at multiple scales also sampled
along the boundary. The first feature captures global shape
topology while the second captures boundary features.

4. CURVE EVOLUTION FRAMEWORK

We minimize (2) or (4) by moving the curve in a direction
derived from the gradient of the corresponding functional.
The details on minimization of the Ed term in (2) can be
found in [5]. We will focus on the challenging part - mini-
mization with respect to our prior term EC in (1).

For simplicity, we consider the case of a single fea-
ture. Since our prior term is additive in the different fea-
tures, minimizing flows for individual features can be added
with corresponding weights to obtain the overall minimiz-
ing flow. The gradient decent with respect to (1) (and equiv-
alently with respect to (4)) is naturally expressed as his-
togram modification PDE (flow) on the space of features.
However, this flow (i.e. the steepest descent direction) will,
in general, not yield valid curve updates. As a result, we
propose a 2 step approach to computation of the overall gra-
dient curve flow.

Let the single feature values at time t be Φt(C) (contin-
uously defined). In our first step, we compute the gradient
descent flow for the feature Φt(C) corresponding to (1).

∂Φ
∂t

= −∇ΦE = [H∗(Φ(t)) − Ht(Φ(t))] H ′
λ(Φt(t)) (5)

where H ′
λ(Φt(t)) is the derivative of the distribution with

respect to λ evaluated at Φt(t). The stationary point of this
flow corresponds to the case when H∗(Φ(t)) = Ht(Φ(t)),
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i.e. the distribution function for given curve matches the tar-
get prior distribution function. The discrete approximation
of eq. (5) is straightforward and can be efficiently computed.

Our flow in (5) is similar to the histogram equalization
flow introduced in [8]. To our knowledge, however, an en-
ergy minimization interpretation of the flow in [8] has not
been presented. While the flow in [8] is a minimizing flow
of (1), it does not constitutes the gradient decent evolution
equation for the energy term (1).

The flow in (5) is defined on the curve features without
consideration of consistency. Let this flow in (5) on the set
of features be denoted by dF n. The evolution of the fea-
tures is constrained by their connection to a valid contour
C, which induces a manifold of valid feature sets. The sec-
ond step of our minimization approach aims to project the
unconstrained feature flow onto this manifold. Define the
displacement in the normal direction of the underlying con-
tour at node k as dx[k]. We desire the projection dF n

⊥ of
dFn that corresponds to a valid shape deformation dx⊥[k].
We take 2 approaches to finding deformations dx⊥[k] cor-
responding to dF n. The first is to perform numerical mini-
mization of the distance between dF n and dF n

⊥. The second
approach is to perform analytical projection of the flow in
those cases where such a calculation is tractable, such as
when the features are the set of all inter-point distances.

5. RESULTS

5.1. Segmentation

In this experiment we apply our segmentation framework
to a synthetic bimodal image with very low signal-to-noise
ratio (SNR=−17.5 db). We build our prior model shape
distributions on a collection of four triangular shapes similar
to the one used to generate the noisy image.

Figure 1 presents the result obtained when using our
new prior as well as the results obtained by using the ap-
proach in [5] and a generic curve length penalization term
EC = ||C||. While the difference between the later two
methods (B, C) is not significant, our method (A) gives a
shape visually similar to the true shape. As a measure of
segmentation error, the symmetric distance (in pixels) be-
tween the true boundary and the final result is shown on the
top of each panel. While giving some improvement of this
error measure, our result is significantly superior visually.
The majority of the symmetric distance error for our prior
is attributed to the error in location of the shape, while the
error of other methods is due to intrinsic shape fluctuations
caused by noise.

5.2. Mean shape calculation

We apply our framework to the problem of finding the mean
of 2 triangles according to (4) for different choices of the

distance measure. The aim is to derive a unique percep-
tual mean shape without using high level knowledge about
topology or landmarks.

We compare our result with two traditionally used shape
distance metrics. The first metric is the asymmetric inter-
point shape distance defined as

d(C1, C2) =
∫

C1

D(x,C2)ds (6)

where the integration is carried out along C1 and D(x,C2)
is the Euclidean distance between the point x on C1 and the
closest point on the contour C2. In Figure 2 (A) we show the
resulting mean shape corresponding to the two prior shapes,
and as can be seen the result is not a triangle.

Another often used global shape difference measure is
based on the total area between shapes:

d(C1, C2) =
∫

A: sign(DT (C1)) �=sign(DT (C2))

dS (7)

where DT (C1) and DT (C2) are signed distance transforms
for shapes C1 and C2 respectively. When used in (4), this
shape difference measure yields an infinite number of solu-
tions for the mean shape. These solutions are located in the
areas shaded in red in Figure 2 (B). In this case the solution
of (4) is not unique.

The result of using our metric (1) is given in Figure 2
(C). We use the 2 features described in Section 3. We ini-
tialize the evolution process using the result obtained from
(6). The contour produced by our iterative process is shown
by the solid red line. The size of this shape is smaller than
that of original shapes, which is consistent with the invari-
ance of our measure to the size, location and rotation of the
shapes under comparison. We manually scale and shift the
contour to match the position of original shapes for visual-
ization purpose. One can see that the scaled result corre-
sponds well to the expected mean shape.

6. CONCLUSIONS

In this paper we present a novel distribution-based shape
prior. Our shape prior is based on matching distributions
of features calculated along the boundary of a curve. We
embed our shape prior into a level set framework and de-
rive a tractable evolution process corresponding to the prior.
Our experiments show that our global distribution differ-
ence metric can solve the problem of finding the perceptual
mean shape in situations when other methods using glob-
ally defined similarity criteria fail to yield an acceptable so-
lution. Preliminary experiments on using our measure as a
prior in image segmentation yields superior solution com-
paring to existing methods.
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Symm. Dist = 274.89 Symm. Dist = 296.32 Symm. Dist = 299.84

(A) (B) (C)

Fig. 1. Segmentation experiment. A: Our method; B: Method in [5]; C: Curve length penalty prior; White - final result; Black
- true shape boundary; Dashed, white - initial curve. Symmetric distance (in pixels) between true boundary and final result is
shown on the top of each panel.

(A) (B) (C)

Fig. 2. Mean shape calculation using three shape difference measures. Two blue, solid contours correspond to prior shapes;
red dashed line represents the mean shape; filled areas correspond to non-unique solution for the mean shape. (A) - asymmet-
ric distance based measure; (B) - area based measure; (C) - our distribution difference measure (thin solid red line - evolution
result; dashed red line - manually scaled result).
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