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ABSTRACT

This paper deals with video and image segmentation using
region based active contours. We consider the problem of
segmentation through the minimization of a new criterion
based on information theory. We first propose to derive a
general criterion based on the probability density function
using the notion of shape gradient. This general derivation
is then applied to criterions based on information theory,
such as the entropy or the conditional entropy for the seg-
mentation of sequences of images. We present experimental
results on grayscale images and color videos showing the
accuracy of the proposed method.

1. INTRODUCTION

In many image processing problems such as segmentation,
tracking or classification, the purpose is to extract image re-
gions that minimize an energy. In this paper, we propose to
minimize a criterion based on the entropy for color images
and videos segmentation.

The issue is to find a region Ω with homogeneous fea-
tures, such as mean, variance, texture...This region is char-
acterized by a minimum of an energy criterion including
region and boundary features. The region features are mod-
eled as a combination of region integrals of a descriptor
k(x, Ω) that depends on this region Ω and on its features.
We note J(Ω) the criterion:

J(Ω) =

∫
Ω

k(x, Ω)dx (1)

We use the shape gradient method presented in [1] to derive
this criterion and obtain a force F that we apply to an active
contour. Given an initial contour Γ0, the active contours
method consists in applying a force to this initial contour
such that it evolves towards the object of interest. The active
contour is modeled by a parametric curve Γ(s, τ) where s is
its arc-length and τ an evolution parameter. It evolves using
the following Partial Differential Equation:

∂Γ(s, τ)

∂τ
= v = FN with Γ(τ = 0) = Γ0 (2)

where v is the velocity vector of Γ(s, τ), F its amplitude
along the unit inward normal N of the curve.

Active contours were originally boundary methods and
have been introduced in [2], and geodesic active contours in
[3]. The energy to minimize includes region and boundary
functionals, like in [4, 5, 6].

First, we present the problem of optimization of region
and boundary functionals with active contours, then the gen-
eral framework of shape derivation. In section 3, we define
a criterion based on the entropy and use derivation tools to
obtain the equation of evolution of the active contour. We do
the same with two other criterions: an approximation of the
entropy, and the conditional entropy. Then we show some
experimental results in section 4.

2. PROBLEM STATEMENT AND GENERAL
FRAMEWORK

2.1. Problem statement

Let us define a general criterion.

J(Ω) =
∫

Ω

ϕ(q(I(x), Ω))dx (3)

where

• q(I(x), Ω) is the probability to have the intensity I(x)
with x in the region Ω

• ϕ is a function: R+ → R+ of this probability which
may be relative to the entropy, or the conditional
entropy

We compute the derivative of this criterion by using the
notion of shape gradient proposed in [7]. From this deriva-
tive, we obtain the velocity of the curve evolution. So that
the active contour converges to a local minimum, and hope-
fully towards the boundary of the object Ωin. Let us see
how to derive the functional 3.
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2.2. Derivation tool

In this section we use the general criterion J(Ω) defined in
(3). The probability density function of the intensity of the
image in the region Ω is estimated using the Parzen window
method:

q(I(x), Ω) =
1

| Ω |
∫

Ω

K(I(x) − I(x̂))dx̂ (4)

where K is the gaussian kernel of this estimation with
0-mean and σ-variance

We can not compute a direct derivation of this criterion
with respect to Ω. A solution is to use the shape gradient
method using a dynamic scheme where the region Ω be-
comes continuously dependent on an evolution parameter
τ . The criterion is then defined as follows:

J(Ω(τ)) =

∫

Ω(τ)

ϕ
(
q(I(x), Ω(τ))

)
dx (5)

To simplify the notations, we note Ω = Ω(τ).
The contour evolution equation is obtained by derivating
this criterion with respect to τ in an Eulerian framework.
The Eulerian derivative dJr of this criterion in the direction
V represents the variation of J(Ω(τ)) due to both the defor-
mation of integration domain Ω(τ) in the direction of V and
the variation of ϕ (see [7, 8] for details). This derivative is:

dJr(Ω, V) =

∫
Ω

ϕ′
r(q(I(x), Ω), V)dx (6)

−
∫

∂Ω

ϕ(q(I(s), Ω))(V · N)ds

where ϕ′
r(q(I(x), Ω), V) is the domain derivative of ϕ in

the direction V and N is the unit inward normal of the curve.
The first term is the integral of the domain derivative

of ϕ. It comes from the dependence of the descriptor ϕ
upon the region Ω, whereas the second term comes from
the evolution of the region Ω itself.

The domain derivative of ϕ is the following:

ϕ′
r(q(I(x), Ω), V) =

1

| Ω |
∫

∂Ω

ϕ′(q(I(x), Ω)[q(I(x), Ω)

− K(I(x) − I(s))](V · N)ds (7)

where ϕ′(q) is the derivative of ϕ with respect to q.

From this Eulerian derivative, we deduce the velocity
vector of the active contour that will make it evolve as fast as
possible towards a minimum of the functional. According
to the Cauchy-Schwartz inequality, the fastest decrease of
dJr(Ω) is obtained with the following equation:

∂Γ
∂τ

= v =
(
ϕ(q(I(x), Ω)) + A(x,Ω)

)
N (8)

where A(x, Ω) is a term coming from the dependence of
the descriptors with the region and will be detailed in the
following examples.

3. THE ENTROPY

In this section we present a functional based on informa-
tion theory: the entropy. We present the criterion and the
equations obtained by using derivation tools described in
the previous section.

3.1. Minimization of entropy

Let us consider the general functional introduced in section
2. For the entropy we use the following function ϕ:

ϕ(q(I(x), Ω)) = −q(I(x), Ω) ln q(I(x), Ω) (9)

The functional we want to minimize is then given by the
following expression:

E(Ω) =
∫

Ω

−q(I(x), Ω) ln q(I(x), Ω)dx (10)

We derive this criterion by using the method proposed
in [7] and we obtain the Eulerian derivative in the direction
V.

Let us first compute the domain derivative ϕ′
r whose ex-

pression is given by equation (7).
We have:

ϕ′(q(I(x), Ω)) = − ln q(I(x), Ω) − 1

Hence, we obtain:

ϕ′
r(q(I(x), Ω), V) =

1

| Ω |
∫

∂Ω

[− ln q(I(x), Ω) − 1].

[q(I(x), Ω) − K(I(x) − I(s))](V · N)ds (11)

With this domain derivative, we can write the first term of
the Eulerian derivative:∫

Ω

ϕ′
r(q(I(x), Ω), V)dx =

∫
Ω

1

| Ω |
∫

∂Ω

[− ln q(I(x), Ω)− 1].

[q(I(x), Ω) − K(I(x) − I(s))](V · N)ds dx

We switch the order of integration and we obtain the follow-
ing formulation:∫

Ω

ϕ′
r(q(I(x), Ω), V)dx =

∫

∂Ω

( 1

| Ω | [E(Ω) − 1

+

∫
Ω

K(I(x) − I(s)) ln q(I(x), Ω)dx]

+ q(I(s), Ω)
)
(V · N)ds

Thus, the Eulerian derivative of the criterion is:

dEr(Ω, V) =

∫

∂Ω

[ 1

| Ω |
(
E(Ω) − 1

+

∫
Ω

K(I(x) − I(s)) ln q(I(x), Ω)dx
)

+ q(I(s), Ω)

+ q(I(x), Ω) ln q(I(x), Ω)
]
(V · N)ds
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From which we deduce the following evolution equation:

∂Γ

∂τ
=

[
− q(I(x̂, Ω))(ln q(I(x̂, Ω)) + 1) − 1

| Ω |
(
E(Ω)

− 1 +

∫
Ω

K(I(x) − I(x̂)) ln q(I(x), Ω)dx
)]

N (12)

In the experimentations, we use a competition between
the background region and the object region and the crite-
rion to minimize is:

J(Ωin, Ωout, Γ) = E(Ωin) + E(Ωout) +

∫
Γ

λds (13)

where λ is a regularization parameter.

3.2. Minimization of an approximation of entropy

Another criterion based on the entropy has been studied in
the same framework. As shown in [9], we obtain an approx-
imation of the entropy using the weak law of large numbers.
The function ϕ defined in section 2 is denoted as follows:

ϕ(q(I(x), Ω)) = − ln q(I(x), Ω)

and the criterion to minimize is:

EA(Ω) =
∫

Ω

− ln q(I(x), Ω)dx (14)

Then, the eulerian derivative of this criterion has the follow-
ing formulation:

drEA(Ω, V) =
∫

∂Ω

(
− 1 +

1
| Ω |

∫
Ω

K(I(x) − I(s))
q(I(x), Ω)

dx

+ ln q(I(s), Ω)(V · N)ds (15)

Hence, the expression of the velocity of the curve is:

∂Γ

∂τ
=

[
1 − 1

| Ω |
∫

Ω

K(I(x) − I(x̂))

q(I(x), Ω)
dx − ln q(I(x̂), Ω)

]
N (16)

As the previous criterion we use a competition between the
background region and the object region:

J(Ωin, Ωout, Γ) = EA(Ωin) + EA(Ωout) +
∫

Γ

λds (17)

3.3. Minimization of the conditional entropy

We consider that we want to segment an object region Ωin.
We note Ωout the background region, and Γ is the common
boundary. Let us define the following functional:

EC(Ωin, Ωout) = E(Ωin) | Ωin | +E(Ωout) | Ωout |
= | Ωin|

∫
Ωin

−q(I(x), Ωin) ln q(I(x), Ωin)dx (18)

+ | Ωout|
∫

Ωout

−q(I(x), Ωout) ln q(I(x), Ωout)dx

This criterion represents the conditional entropy.
We use the derivation tools to obtain the Eulerian derivative
of the functional J(Ω) = E(Ω) | Ω |:

dJr(Ω,V) = ∂Er | Ω | −E(Ω)

∫

∂Ω

(V · N)dx̂

=

∫

∂Ω

[
K(I(x) − I(x̂))(ln q(I(x), Ω) + 1) − 1

+ | Ω | q(I(x̂), Ω) ln q(I(x̂), Ω)
]
(V · N)dx̂

Then we deduce the velocity of the curve:

∂Γ

∂τ
=

[
− | Ω | q(I(x̂), Ω) ln q(I(x̂), Ω) + 1 (19)

−
∫

Ω

K(I(x) − I(x̂))(ln q(I(x), Ω) + 1)dx
]
N

4. EXPERIMENTAL RESULTS

4.1. Implementation

In these experiments, we use a parametric method to imple-
ment the evolution equation: smoothing B-splines. We use
this method instead of usual level-sets methods because it
is less time consuming (see [10]). Furthermore smoothing
B-spline approach combines a very low computational cost
and a global robustness to noisy data.

4.2. Results on grayscale medical images

We consider an osteoporosis grayscale image, for a simple
representation of the histogram. We use the criterion of the
entropy (equation (10) and evolution equation (12)). Fig. 1
shows how histograms are evolving during the segmen-
tation.We notice that during the segmentation processing,
both histograms and segmentations are evolving and his-
tograms are getting more distinct due to the statistic proba-
bilities of the regions.

4.3. Results on color video

For color images and videos segmentation we use 3D-
histograms of the regions. Thus, we define the probability
q(I(x), Ω) = q(I1(x), I2(x), I3(x), Ω) with (I1, I2, I3) =
(H,S, V ) where H,S and V represent the three compo-
nents of the Hue-Saturation-Value color space. This prob-
ability is the joint probability. We quantify this histogram
with an uniform step quantization, identical for the three
components and we estimate it with the Parzen method with
a parameter σ between 2 and 5.
Regions of interest are homogeneous regions, like the face
on the sequence Erik. Fig. 2 shows that the criterion using
the minimization of an approximation of the entropy (equa-
tion (14)) fails to segment correctly the region near the ear
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because the background color is close to the skin one. The
segmentation obtained with the minimization of the entropy
(evolution equation (12)) is more accurate.
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(d) Iteration 100

(e) Final segmentation
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(f) Final histograms

Fig. 1. Evolution of segmentation and histograms with the
minimization of the entropy

(a) Segmentation with an approxi-
mation of the entropy

(b) Segmentation with the entropy

Fig. 2. Results with the criterion minimizing an approxima-
tion of the entropy and the criterion minimizing the entropy

5. CONCLUSION

In this paper we have presented a general framework based
on information theory for image segmentation using active
contours. We use a non-parametric and statistic method to
define the functionals we want to minimize. By derivating
these functionals using a gradient shape method, we obtain
the curve evolution. This general derivation is applied to
descriptors like the entropy and the conditional entropy and
we show some experimental results on grayscale and color
images. Further research may be concerned with the evalua-
tion of other criterions like for example the mutual entropy.
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