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ABSTRACT

Object tracking is a problem which is very often ad-
dressed by various approaches as the background subtrac-
tion, visual constancy or geometric flow, to cite only a few.

The contribution of this paper is twofold: First, it pro-
poses an enhanced feature-weighted gradient, enhancing the
contours of the object characterized by this feature, and at-
tenuating the gradient amplitude wherever the feature is not
found.

The second, and main contribution, is a new integra-
tor for active-contours based tracking. It uses the gradient
alongside the object contours and generates a bidirectional
attraction field.

The combination of the contour tracking and the weigh-
ted gradient is illustrated on the driver’s-face tracking prob-
lem, where the illumination conditions (brightness, colour)
change as the vehicle passes through different environments.

1. CAR DRIVER’S FACE TRACKING CONTEXT

The drivers’ drowsiness is a non negligible problem tied to
the road security. It can be evaluated by measuring the speed
of the eyelids which must be completely non-invasive. The
driver’s face localization is often the first step to extract the
eyes. Truck drivers’ face detection has already been stud-
ied under simplified conditions, with among other things,
the presence of a black colored curtain in the background.
However, the context of personal vehicles has no such lim-
iting conditions, and we have observed virtually no constant
feature in the sequences.

Face detection with a reasonable reliability has been done
under more general purpose conditions with template match-
ing, feature extraction, colour detection or recently with
more complex, training requiring techniques such as PCA,
ICA or SVM, [1] or neural networks. A recent survey of
various techniques can be found in [2]. Indeed, these tech-
niques are less useful for face localization. For practical rea-
sons (reduction of the amount of data, scale-independence),
they usually operate on progressively subsampled images,
and report a boolean flag indicating the presence of a face.

A growing amount of applications use colour to achieve
specific tasks, explained both by its high separability prop-
erties, and the efficient tools improving classic segmenta-
tion tasks it provides. The skin hue, which is an inter-
ethnic constant, seems to be a fairly good cue to initial-
ize higher-level processes. Several way to represent colour
as digital information exist, each defining a colour space
endowed with particular properties. Among them, percep-
tual ([3]) and cylindrical ones provide tools for measuring
colour differences. Besides, the way colours are represented
in these spaces are strongly influenced by the illuminat-
ing light taken as reference ([4]). The difficulty stands in
the fact that no supposition can be made about the condi-
tions under which the images were obtained. Thus, impor-
tant changes in incident light’s brightness and chrominance
avoid the use of skin clue solely, which reliability rapidly
decreases as soon as the detection conditions deteriorate. A
comparative study of performances of various colour spaces
concerning this issues can be found in [5], [6] or [7].

Indeed, in the context of personal vehicles, the condi-
tions are extremely rude, as the illumination is directional,
the images’ acquiring system itself is often saturated due to
a strong contrast induced by the back light. Moreover, the
light conditions rapidly change due to the vehicle motion,
and usually a strong motion field is observed in the back-
ground.

The organization of the paper is as follow. Section 2
presents examples of gradients used in various colour spaces.
We also introduce a feature-weighted gradient enhancing
contours of objects characterized by a given feature and
weakening those where the feature is not found. Section 3
introduces a new bidirectional attraction force used for con-
tour tracking. Finally, section 4 shows how can the contour-
tracking be combined with the feature-weighted gradient to
extract car driver’s face in video sequences, taken in per-
sonal vehicle under real conditions.

2. COLOUR GRADIENT

Although the notion of colour is intuitive, the way it is intro-
duced into digital computation is rather complex. As men-
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tioned above, colour provides high separability properties,
and even if colour is difficult to use in an absolute manner,
i.e. for modeling purposes, several tools measuring the dif-
ferences between two colours exist.

Consider in the following the family of applications from
set M to set N , noted A(M,N), and I ∈ A(Z2, Ω), a dis-
crete image with value into the colour space Ω. In order to
compare two colours in the image’s colour space, a distance
function on Ω, dΩ ∈ A(Ω2,R+), is required. Although the
set of distance functions is infinite in each color space, some
suggest a preferred metric. This is the case for L*a*b* and
L*u*v, in which colour differences are given by euclidean
distance based on norm L2. For cylindrical colour spaces,
such as HLS, angular opening dα is used for the hue co-
ordinate, and the distance based on norm L1 for the other
coordinates.

Once a distance d defined on Ω, we are able to define
gradient operator, noted ∇d

Ω, along with this specific dis-
tance function for images mapping to Ω. The gradient oper-
ator is a spatial operator providing the edges of the regions
or objects featured in the picture on which it is applied.
Concerning the spatial properties of the gradient, different
metrics can be used, and among them, with N(p) being
the neighborhood of point p (for instance the 4-connected
neighborhood):

∇ΩI(p) = max
pi∈N(p)

dΩ(I(p), I(pi))

∇ΩI(p) = max
pi∈N(p)

dΩ(I(p), I(pi))

− min
pi∈N(p)

dΩ(I(p), I(pi))

Compound operators, combining two or more previously
defined gradients, were also proposed ([8]), such as the fol-
lowing one:

∇HLSI(p) = xS∇dαIH(p) + (1 − xS)∇dL1IL(p)

computed on Ω ≡ HLS color space, I being an image
with values into [0, 2π]× [0, 1]2), IL and IH the projection
of I respectively into luminance and hue channels, and xS

the saturation’s value of I at point p. This gradient gives
more weight either to hue or to luminance, inside regions of
respectively high or poor saturation.

The computation of an image’s gradient is usually the
first step for more complex processes such as segmentation.
Inside the obtained gradient map, the higher is the value of
a given point, the stronger is the difference found in neigh-
borhood of this point. However, one of the drawbacks of an
operator defined this way is that it cannot include any spe-
cific a priori information. If we want to stress a particular
feature of the image or just weaken an unneeded feature, we
need to introduce a modified gradient operator.

The feature is related to a particular space Ω′ which is
not necessarily the same as the one used for the gradient’s

computation. Consider an image function I ′ ∈ A(Z2, Ω′),
defined on the same support of I. The feature can be ex-
pressed as a subset F ∈ Ω′. For instance, if the feature
is the likeness of a point for being a skin point, then Ω′

can be HLS color space, which is a colour space providing
accurate ability to differentiate skin points from non-skin
points ([9]). Another example may be the motion field on
which the velocity of point represents the feature, in this
case Ω′ ≡ R2, and one may search for points with a certain
velocity.

We define a distance function to the feature F as follow:

dΩ′|F (x) = dΩ′(x,F) = min
y∈F

dΩ′(x, y) , x ∈ Ω′

We eventually define the modified gradient gradient opera-
tor ∇F : A(Z2, Ω) → A(Z2,R+) as follow:

∇FI(p) =
∇ΩI(p)

1 + dΩ′|F (I ′(p))
, p ∈ Z2 (1)

This modified gradient keeps the edges of skin areas intact,
and smooths the edges of regions that are of no interest with
respect to F . More generally, this gradient allows to keep
particular features intact while suppressing the others, so
that the convergence of algorithms focusing on theses fea-
tures will be eased.

3. OBJECT TRACKING

Object tracking is a frequently studied topic. Various meth-
ods using different approaches have been proposed, based
either on i) visual constancy which uses some inherent fea-
ture of the object, e.g. the colour, ii) geometric flow which
extracts the motion field or iii) the background subtracking
which often requires some a priory knowledge about the
background. In general, some limiting assumptions must
be made about the scene, such as strong contrast alongside
the contours, homogeneity, static background, etc. Besides
these model-free methods, one may employ some object
model, trying to fit the data to a given model.

Active contours (or snakes) adapt to the form of the data.
In the next section we present a new integrator to to im-
plement a model-free, contour based, adaptive contour seg-
mentation in the terms of level sets.

3.1. A gradient-based attraction field

Consider an image I and some gradient of I, g = ∇I. Let

gK = g ∗ K (2)

where K is some triangular window: Z2 →R+, such that

K(x, y) =

{
1 − α(x2+y2)1/2 if (x2+y2)1/2<1/α

0 otherwise
(3)
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Note that in the signal processing domain, convoluting with
such a window is a frequency filter. However, filtering is
not the objective here.

∇gK represents a gradient-dependent integrator with in-
teresting properties. Generally, the evolution a curve C

∂C
∂t

= F�n (4)

where �n is the normal vector to C, and F represents the
motion speed. For the contour-based tracking we propose

F = ∇gK (5)

It can be shown (by approximating g in Eq. 2 by a Dirac
impulse δ, and computing F in Eq. 5 in a discrete form)
that ∇gK is a bidirectional integrator pointing toward the
crest of the gradient g from both sides.

The advantage of using bidirectional integrator is two-
fold: i) it allows the contour to converge toward the gradient
maximum from both sides, and ii) it eliminates the neces-
sity to use a constant one-directional attraction force there,
where the data is zero. This fact eliminates the problem
of local breaches in the gradient, often introducing leakage
in object reconstruction. Attempts to alleviate this problem
were made in [10], introducing a viscous watershed, capa-
ble to slow down the propagation in such narrow openings.
Although the leakage could probably be alleviated by using
curvature, the leakage problem does not occur when using
∇gK , since on zero gradient the contour does not move.

This fact is also used in defining the capture range of the
contours, which is in fact limited. Suppose that the maxi-
mum inter-frame displacement of the object is bounded by
D. This information should be taken into account by letting
supp{(x, y)|K(x, y)>0} be a circle of radius D, generating
a non-zero attraction field in a narrow zone around the con-
tour. Hence, a convenient value of α in Eq. 3 is a = 1/D.

Indeed, as the attraction force stops on the zero crossing
of the gradient, its principle is similar to the Haralick [11]
edge detector, which detects edges on zero crossing of the
second derivative of I in the gradient direction. Kimmel in
[12] reformulates the Haralick edge detector in terms of the
level set framework and shows how it can be combined with
additive constraints to segment images. As stated before,
our objective is the contour-based object tracking. Whereas
various motion predictors can be used to predict the dis-
placement direction according to the past, arbitrary defor-
mations of the object give birth to a displacement field with
locally varying direction. Any contour-based tracking must
therefore be able to handle both partially forward and back-
ward displacement of the contour. A good overview of other
existing attraction vector fields can be found in [13].

Fig. 1. (a) The initial (dashed) and final (solid line) position
of the contour, and (b) zoom on the attraction force field F .

Fig. 2. (a) Original image, (b) usual euclidean gradient on
Lab, (c) featured weighted gradient, the feature being the
skin chroma.

4. APPLICATION

By using Eq. 4, the current contour Cn of the object is ob-
tained by using the attraction field gn

K generated by the cur-
rent frame In, and the contour Cn−1 in the previous frame:

Cn = lim
T→∞

∫ T

0

∇gn
K(C)�n dt + Cn−1

with C(t=0) = Cn−1

where gn
K = g ∗ K,

g(p) =
∇LabI(p)

1 + dHLS|F (I(p))

We use the feature based on the skin chroma. We take Ω′ ≡
HLS, and F = {x ∈ HLS|xH ∈ [−20o, 50o]}. This feature
is only related to hue, thus the distance dHLS used is the
angular distance dα to the skin chroma F . The size of the
triangular window K is ten pixels, i.e. α = 0.1, calculated
from a natural gesture speed as seen by our camera.

Initialization: The description of the initialization of
the tracking is outside the scope of this paper. It can be
successfully done by combining several features, see e.g.
[14], using the face colour and shape or [15] combining the
colour and motion (in a car application, no perturbing mo-
tion is present in the background before the car runs).

5. CONCLUSIONS

The contribution of this paper is twofold. First, it intro-
duces a feature-weighted gradient, useful for enhancing the
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Fig. 3. Contour tracking applied to driver’s face extrac-
tion, using the weighted gradient (skin chroma being the
feature of interest). Randomly chosen images from a video
sequence.

contours of objects characterized by this feature, and weak-
ening those where the feature is not found in the image.

Secondly, this paper proposes a gradient-based attrac-
tion field for model-less tracking of objects. This attraction
field is generated by a bi-directional, data-dependent inte-
grator.

The application section shows the combination of the
contour-tracking and the feature-weighted gradient to track
a car-driver’s face, the feature being the skin hue. Although
the skin hue is, rather an unstable feature due to varying
illumination conditions, the gradient weighted by distance
to the standard skin hue, remains more robust.

Perspectives: One of the interesting properties of the
above-proposed attraction field is that it is zero on zero data
(alleviating thus leakage on narrow breaches introduced by
noise). If used in real applications, this attraction force can
be combined with region regularizers, some a priori model,
or curvature, for example.
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