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ABSTRACT

Spatial segmentation of image sequences is usually computed based
on motion between two frames. Some recent approaches extend
this to joint segmentation in space-time; the resulting 3-D segmen-
tation (in x − y − t space) can be interpreted as a volume “carved
out” by a moving object in the image sequence domain, or the so-
called “object tunnel”. In this paper, we extend this concept to
explicit modeling of occlusion events in the x−y− t space. In ad-
dition to the modeling of object evolution, we also model occluded
and newly-exposed areas in the background and in the object by
means of “occlusion volume”, a new space-time concept. We pro-
pose a variational formulation of the problem that we solve using
the multiphase level set method. We show experimental results for
synthetic and natural image sequences.

1. INTRODUCTION

In most studies to date, image sequences have been processed and
analyzed in groups of two frames. Therefore, they cannot take
longer-term dynamics into account. In order to speed up conver-
gence, subsequent segmentations can be initialized by previous-
frame results. An alternative approach, although closely related,
is tracking of segments between frames. Some early work using
multiple frames includes motion detection using 3-D MRF mod-
els and “video-cube” segmentation based on marker selection and
volume growing. More recently, a novel concept of object tracking
as spatio-temporal boundary detection has been proposed by El-
Feghali et al. [1]. This new, multiple-image framework has lead to
interesting space-time image sequence segmentation methods de-
veloped by Mansouri et al. [2] and, independently, by the authors
[3]. The resulting 3-D, or volumetric, segmentation in x − y − t
space can be interpreted as a volume “carved out” by a moving ob-
ject in the image sequence domain. We call such volumes “object
tunnels”.

In terms of the detection of occlusions, methods proposed to
date are primarily based on the analysis of 2-3 frames [4, 5, 6],
although an exception is the approach developed by Chahine and
Konrad [7], where 5 and 7 frames were used. None of the above
methods treats occlusions as a continuing event across many frames.
In this paper, we extend our video segmentation work by explic-
itly modeling the evolution of objects and background using mo-
tion trajectories. We include explicit models of the occluded and
newly-exposed areas for both the object and background. This is in
contrast to our recent work [8] where we applied such model only
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to the background. Similarly to that work, we measure object and
background intensity variations along motion trajectories spanning
the whole temporal support of the image sequence. Clearly, parts
of the background are occluded or exposed within this support and
cannot be accurately modeled either by object or background mo-
tion trajectories. As the result, they will be randomly included in
either object or background segmentation volumes, thus creating
errors. The more frames of the sequence are processed, the more
serious these errors become. Similar errors occur when an object
gets occluded or exposed. In this paper, we explicitly model these
regions as occluded and newly-exposed volumes for objects and
for background. We use variational framework for the formulation
and level-set methodology for the solution. As for motion trajec-
tories, we use a parametric model associated either with objects or
background.

2. MULTIPHASE MOTION-BASED SEGMENTATION

We want to partition an image sequence I(x, t), x being a spa-
tial position and t being time, into six regions (volumes): mov-
ing object, moving or static background, background area that is
going to be occluded by the object in subsequent frames (back-
ground occlusion volume), background area that was exposed by
the object in preceding frames (background exposed volume), ob-
ject area that is going to be occluded by a feature in the back-
ground (object occlusion volume), and object area that was ex-
posed in preceding frames (object exposed volume). Furthermore,
we want, jointly with the segmentation, to estimate motion param-
eters of the object and background. Using the multiphase level-set
framework recently proposed by Vese and Chan [9], we partition
the spatio-temporal volume of I(x, t) into six volumes using three
parameterized surfaces, �ς1, �ς2, and �ς3:

Object volume V1 (x, t) inside �ς1, �ς2, �ς3,
Object occluded vol. V5 (x, t) inside �ς2, �ς3, outside �ς1,
Object exposed vol. V6 (x, t) inside �ς1, �ς3, outside �ς2,
Backg. volume V2 (x, t) outside �ς1, �ς2, �ς3,
Backg. occluded vol. V3 (x, t) inside �ς1, outside �ς2, �ς3,
Backg. exposed vol. V4 (x, t) inside �ς2, outside �ς1, �ς3.

Since three surfaces can partition the image sequence domain into
8 volumes, additional volumes, V7 and V8, are defined as “don’t
care” volumes that will be eliminated during optimization. An ex-
ample of cross-sections of various volumes is shown in Figs. 2(c-
d). Part of the object visible throughout the sequence is shown
in white, and following regions are represented in shades of gray,
from light to dark gray: part of the object that is going to be oc-
cluded in subsequent frames, background, part of the background
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that is going to be occluded in subsequent frames, and background
region exposed in preceding frames.

Let p, p̄ be motion parameters (e.g., affine) associated with the
object and background, respectively. Using the multiphase repre-
sentation [9], we propose the following variational formulation:

min
�ς1,�ς2,�ς3,p,p̄

∫∫∫
V1

ξ(x, t; p)dxdt + ω2

∫∫∫
V2

ξ(x, t; p̄)dxdt+

ω3

∫∫∫
V3

ξ1(x, t; p̄)dxdt + ω4

∫∫∫
V4

ξ2(x, t; p̄)dxdt+

ω5

∫∫∫
V5

ξ1(x, t; p)dxdt + ω6

∫∫∫
V6

ξ2(x, t; p)dxdt+

∫∫∫
V7

Kpendxdt +

∫∫∫
V8

Kpendxdt+

λ1

∫∫
S1

d�ς1, +λ2

∫∫
S2

d�ς2, +λ3

∫∫
S3

d�ς3,

(1)

where �ς1 = ∂(V1 ∪ V3 ∪ V6 ∪ V7), �ς2 = ∂(V1 ∪ V4 ∪ V5 ∪ V7),
�ς3 = ∂(V1∪V5∪V6∪V8), and∪8

i=1Vi = Ω×T , while S1, S2, S3

are areas of the three surfaces. The constant weights ωi reflect the
uncertainty as to how accurately motion parameters can explain
the dynamics occurring in individual volumes, while constants λ1,
λ2, and λ3 associate a cost with the Euclidean lengths d�ς1, d�ς2,
and d�ς3, respectively. Penalty terms, Kpen, are introduced to dis-
courage assigning a point to the two unused volumes (V7 and V8).
The individual terms of the above energy measure cumulative con-
sistency of image sequence voxels with models corresponding to
different volumes we are estimating:

• object volume term (V1): measures intensity variation (sam-
ple variance) along object motion trajectories (small only
for voxels for which a set of motion parameters exists that
induces small intensity variations, e.g., object);

• background volume term (V2): measures intensity variation
along background motion trajectories (small only for voxels
for which the another set of motion parameters exists that
induces small intensity variations, e.g., background);

• background occlusion volume term (V3): unexplained im-
age dynamics ahead of the voxel (future), i.e., occlusion at
a later time (small only for voxels for which intensity vari-
ation along background motion trajectories is small up to
that voxel and large afterward),

• exposed background volume term (V4): unexplained im-
age dynamics prior to the voxel (past), i.e., newly-exposed
pixels ( small only for voxels for which intensity varia-
tion along background motion trajectories is large up to that
voxel and small afterward),

• object occlusion volume term (V5): similar to the back-
ground occlusion term, only here we measure intensity vari-
ation along object motion trajectories;

• exposed object volume term (V6): similar to the exposed
background term, only here we measure intensity variation
along object motion trajectories.

The above measures are implemented through the following ex-
pressions:

ξ0(x, t; p; k, l) =
1

k − l + 1

l∑
i=k

(Ĩ(c(ti; x, t), ti) − µk,l(x, t; p))2,

ξ(x, t; p) = ξ0(x, t; p; 1, N),

ξ1(x, t = tj ; p) = ξ0(x, t; p; 1, j) +
α1

ξ0(x, t; p; j, N) + 1
,

ξ2(x, t = tj ; p) =
α2

ξ0(x, t; p; 1, j) + 1
+ ξ0(x, t; p; j, N),

(2)

where N is the number of frames in the image subsequence we
are currently processing, c(ti; x, t) is the object or background
motion trajectory (i.e., c is a spatial position at time ti of a feature
that was at position x at time t [7]). α1 and α2 are weighting
coefficients used to adjust the influence of the two terms in ξ1 and
ξ2. The average intensities along trajectories c, between two time
instants ti and tj , are computed as follows:

µi,j(x, t; p) =
1

j − i + 1

j∑
k=i

Ĩ(c(tk; x, t), tk), (3)

where Ĩ denotes the interpolated intensity (e.g., bicubic interpola-
tor) because (c(ti; x, t), ti) need not belong to Λ.

We decompose minimization (1) into two interleaved mini-
mizations: estimation of motion parameters given segmentation
surfaces, and estimation of segmentation surfaces with fixed mo-
tion parameters. We describe the latter minimization; details of
motion parameter estimation can be found in [8].

Following the multiphase level set method formalism [9], we
represent energy minimization in (1) using three level set func-
tions, φ1(x, t), φ2(x, t), and φ3(x, t). Regions we are estimating
are now defined through level set functions as follows:

Object volume φ1(x, t) > 0, φ2(x, t) > 0, φ3(x, t) > 0,
Object occl. vol. φ1(x, t) < 0, φ2(x, t) > 0, φ3(x, t) > 0,
Object exp. vol. φ1(x, t) > 0, φ2(x, t) < 0, φ3(x, t) > 0,
Backg. volume φ1(x, t) < 0, φ2(x, t) < 0, φ3(x, t) < 0,
Backg. occl. vol. φ1(x, t) > 0, φ2(x, t) < 0, φ3(x, t) < 0,
Backg. exp. vol. φ1(x, t) < 0, φ2(x, t) > 0, φ3(x, t) < 0.

In order to carry out minimization (1), level set surfaces should
be evolved along the direction of steepest descent, which is the
direction of negative gradient of the total energy with respect to φ1,
φ2, and φ3. As a result of minimization, we obtain the following
level set evolution equations (valid for all (x, t) that are omitted
for brevity), with τ being the algorithmic evolution time, and κm1 ,
κm2 , and κm3 are mean curvatures of level set surfaces φ1, φ2, and
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φ3, respectively:

∂φ1(τ)

∂τ
= F1‖∇φ1(τ)‖ = ‖∇φ1(τ)‖

{λ1κm1 − [(ξ(p) − ω5ξ1(p))H(φ2(τ))H(φ3(τ))+

(ω6ξ2(p) − Kpen)(1 − H(φ2(τ)))H(φ3(τ))+

(Kpen − ω4ξ2(p̄))H(φ2(τ))(1 − H(φ3(τ)))+

(ω3ξ1(p̄) − ω2ξ(p̄))(1 − H(φ2(τ)))(1 − H(φ3(τ)))]}
∂φ2(τ)

∂τ
= F2‖∇φ2(τ)‖ = ‖∇φ2(τ)‖

{λ2κm2 − [(ξ(p) − ω6ξ2(p))H(φ1(τ))H(φ3(τ))+

(ω5ξ1(p) − Kpen)(1 − H(φ1(τ)))H(φ3(τ))+

(Kpen − ω3ξ1(p̄))H(φ1(τ))(1 − H(φ3(τ)))+

(ω4ξ2(p̄) − ω2ξ(p̄))(1 − H(φ1(τ)))(1 − H(φ3(τ)))]}
∂φ3(τ)

∂τ
= F3‖∇φ3(τ)‖ = ‖∇φ3(τ)‖

{λ3κm3 − [(ξ(p) − Kpen)H(φ1(τ))H(φ2(τ))+

(ω5ξ1(p) − ω4ξ2(p̄))(1 − H(φ1(τ)))H(φ2(τ))+

(ω6ξ2(p) − ω3ξ1(p̄))H(φ1(τ))(1 − H(φ2(τ)))+

(Kpen − ω2ξ(p̄))(1 − H(φ1(τ)))(1 − H(φ2(τ)))]}

We implement these equations iteratively using standard discretiza-
tion as described by Sethian [10]. In each iteration we calculate
the forces F1, F2, and F3 at zero level-set points of all surfaces,
extend these forces using the fast marching algorithm by solving
φi · ∇Fi = 0 for Fi, i = 1, 2, 3, and update the surfaces φ1, φ2,
and φ3. Re-initialization of the surfaces using the fast marching
algorithm by solving ‖∇φi‖=1 is performed every 100 iterations
to keep surfaces as close as possible to a signed distance function.

3. EXPERIMENTAL RESULTS

We have tested the algorithm on several image sequences. First,
we used a natural-texture, synthetic-motion, static background,
test sequence. We initialized the algorithm with volumes and mo-
tion parameters resulting from our simple segmentation algorithm
based on motion detection [3]. We used the following parameters:
α1 = α2 = 10, α3 = α4 = 4 ∗ 104, λ1 = λ2 = λ3 = 2.5,
ω2 = 2, ω3 = ω4 = ω5 = ω6 = 10, Kpen = 102. The algorithm
converges after 1000 iterations; four of the final six tunnels are
shown on Fig. 1. Fig. 2 shows two frames of the resulting segmen-
tation labels. Clearly, object and background as well as occluded
and exposed background are accurately estimated, but occluded
and exposed parts of the object are less precise.

We also applied our algorithm to a natural sequence acquired
with a static video camera (progressive, 30fr/s): a car enters the
scene from the right, moves to left and disappears behind a wall on
the left. This time we use the following parameters in our experi-
ment: α1 = α2 = 500, α3 = α4 = 2∗104, λ1 = λ2 = λ3 = 2.5,
ω2 = 2, ω3 = ω4 = 10, ω5 = ω6 = 4, Kpen = 102. Fig. 3 shows
the object tunnel and occlusion/exposed volumes corresponding to
four segmentation regions, obtained after the algorithm converged
at 1000 iterations. For visualization reasons the shown tunnels
start at frame #10. Fig. 4 shows two frames of the resulting seg-
mentation labels. As can be seen from this figure, all background
regions are well estimated: occlusion region is in front of the car,
exposed region grows behind the car. Object occlusion and expo-
sure regions are in the right place (front and rear of the car, re-

spectively) but they are not precise. This is, we believe, due to
inaccuracies in the estimated motion parameters and variations of
object intensity over time.

4. CONCLUSIONS

We have proposed a novel framework for simultaneous segmenta-
tion of video sequences into moving objects and background, and
detection of occlusion and newly-exposed areas. We have intro-
duced a new concept of spatio-temporal volumes of occluded and
exposed voxels. The framework is based on variational principles
and uses the multiphase level-set methodology for solution. The
initial results are very encouraging; quite accurate object and back-
ground tunnels, as well as occluded/exposed background volumes
have been recovered. However, the accuracy of occluded/exposed
object volumes is low. We believe this is due to errors in the esti-
mated motion parameters and object’s intensity variations in time,
and we plan to address this issue.
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(a) (b) (c) (d)

Fig. 1. Tunnels obtained using the multiphase segmentation algorithm : (a) object, (b) object occlusion, (c) background occlusion, and (d)
background exposed volume.

(a) (b) (c) (d)

Fig. 2. Frames (a) #15 and (b) #25 from the synthetic test image sequence overlaid with final level-set contours, and (c-d) corresponding
frames from the sequence of labels (white – object, light gray to dark gray: object occlusion region, background, background occlusion,
and background exposed region) derived from these results.

(a) (b) (c) (d)

Fig. 3. Tunnels obtained using the multiphase segmentation algorithm : (a) object, (b) object occlusion, (c) background occlusion, and (d)
background exposed volume.

(b) (c) (b) (c)

Fig. 4. Frames (a) #20 and (b) #30 from the car image sequence overlaid with final level-set contours, and (c-d) corresponding frames from
the sequence of labels (white – object, light gray to dark gray: object occlusion region, object exposed region, background, background
occlusion, and background exposed region) derived from these results.
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