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ABSTRACT

This paper introduces a two view tracking method which uses
the homography relation between the two views to handle occlu-
sions. An adaptive appearance-based model is incorporated in a
particle filter to realize robust visual tracking. Occlusion is de-
tected using robust statistics. When there is occlusion in one view,
the homography from this view to other views is estimated from
previous tracking results and used to infer the correct transforma-
tion for the occluded view. Experimental results show the robust-
ness of the two view tracker.

1. INTRODUCTION

Multi view tracking has the obvious advantage over single view
tracking because of its wide coverage range. When a scene is
viewed from different viewpoints there are often regions which
are occluded in some views but visible in other views. A visual
tracking system must be able to track objects which are partially
or even fully occluded. In this paper we present a wide baseline
two view visual tracking method which handles occlusions using
the homography relation between the two views. An adaptive ap-
pearance model is incorporated in Sequential Monte Carlo (SMC)
framework to accomplish the single view tracking. Occlusion is
detected using robust statistics. If the target to be tracked is far
enough from the cameras, it can be assumed that the target moves
on a dominant plane which induces a homography relation be-
tween the two views. When occlusion is detected in one view,
the homography between the two views is estimated from previ-
ous tracking results. Correct transformation of the target in the
occluded view can be inferred with the homography and the track-
ing result of the un-occluded view.

Some work has been done in handling occlusion for both sin-
gle view tracking [9, 10] and multi view tracking [1, 2, 3]. In
[9], an appearance model is used to accomplish tracking. When
occlusion is detected, the ”disputed” pixels are classified using a
maximum likelihood classifier to infer the depth order of the ob-
jects, and update the appearance model accordingly. In [10], a
dynamic Bayesian network which accommodates an extra hidden
process for occlusion is used to cope with occlusion. Both [9] and
[10] assume that the target is occluded by a known object, which
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gives a clue to infer the depth ordering or compute the observa-
tion likelihood. [1] presents a multi view tracking method using a
set of calibrated cameras. The Kalman filter is used to track each
object in 3D world coordinates and 2D image coordinates. In [2],
the correlation of visual information between different cameras is
learnt using Support Vector Regression and Hierarchical PCA to
estimate the subject appearance across cameras. When occlusion
is detected for one camera, correspondences across cameras are
built using the appearance models acquired during training, and
different cues are fused based on a Bayes’s theorem to make a
final tracking report. [3] uses a Bayesian network to fuse the inde-
pendent observations from multiple cameras and produce the most
likely 3D state estimates.

The method we propose in this paper uses the homography
relation between two views to infer the transformation for the oc-
cluded view. Even when the target is partially or fully occluded
by an unknown object, the tracker still can follow the target as
long as it is visible from another view. No complicated inference
scheme is used to fuse the multiple camera observation, nor 3D
information needs to be explicitly recovered. The homogrphy can
be robustly estimated from previous tracking results, and the mo-
tion inference for the target in the occluded view is also estimated
robustly by utilizing all the points inside the tracking region. The
computation is simple and fast. The result is satisfactory as shown
in the experimental results.

The remainder of this paper is organized as follows. In section
2 we present the single view tracking using an appearance model
that can handle occlusion detection. Section 3 describes how to
handle occlusion with homography in a multiple view tracking
system. Experimental results are shown in section 4, and section 5
concludes the paper.

2. SINGLE VIEW APPEARANCE TRACKING

This section presents an appearance model-based tracking system
for a single view. The system processes the video frames captured
under one single view and produces the tracking parameters for
later use. The task of an appearance tracker is to infer the de-
formation (or tracking) parameter best describing the differences
between the observed appearances and the appearance model. To
accommodate the dynamics embedded in the video sequence, we
employ a state space time series model.

Suppose {Y1, ..., Yt, ...} are the observed video frames con-
taining the appearances of the object to be tracked. We use an
affine transformation T parameterized by θt and denote the ap-
pearance model by At. Our time series model is fully defined by
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(a) a state transition equation and (b) an observation equation.

(a) θt = θt−1 + Ut, (b) Zt
.
= T {Yt; θt} = At + Vt, (1)

where Ut is the system noise and Vt is the observation noise. Our
goal is to compute the posterior probability p(θt|Y1:t), which is
used to estimate the ‘best’ parameter θ̂t. Because this model is
nonlinear (e.g. the affine transformation part), we use SMC tech-
nique [7, 8] to approximate p(θt|Y1:t) using a set of particles. We
now specify the actual model choices.

2.1. Appearance model At

The appearance model At is crucial in a tracker. If a fixed tem-
plate, say At ≡ A0, is used, it is difficult to handle appearance
changes in the video. On the other hand, one could use a rapidly
changing model, say At = Ẑt

.
= T {Yt; θ̂t}, i.e., the ’best’ patch

of interest in the previous frame, but this is susceptible to drift.
Thus, it is necessary to have a model which is a compromise be-
tween these two cases. Mixture models are used in [6, 11]. In
this paper, we simply adapt the appearance model to the changing
appearances at a moderate pace.

We assume that (i) the appearance model At is associated with
a mean image µt (the actual At in (1)) and a variance image σ2

t (in-
cluded in Vt in (1)), and (ii) At summarizes the past observations
under an exponential envelop with a forgetting factor α. When
the appearance in the current frame has been tracked, i.e. Ẑt is
ready, we compute an updated appearance model At+1 and use it
to track in the next frame. After a maximum likelihood (ML) rea-
soning (skipped here due to space limitations), one can show that
µt+1 and σ2

t+1 is updated in the following manner:

µt+1 = αµt+(1−α)Ẑt; σ2
t+1 = ασ2

t +(1−α)(Ẑt−µt)
2. (2)

Notice in the above equations, all µ’s and σ2’s are vectorized and
the operation is element-wise. Also, Vt is distributed as a multi-
variate normal density N (0, D(σ2

t )), where D(σ2
t ) denotes a di-

agonal matrix with diagonal elements σ2
t .

2.2. Adaptive noise Ut

The system noise Ut constrains the particle coverage. It is ideal to
draw particles such that they are close to the object. In addition, the
particle coverage should also accommodate the extent of clutter in
the observation. To this end, we use Ut ∼ N (νt, rtI), where νt

is the ‘instantaneous’ velocity in the tracking parameter, rt is the
noise variance measuring the extent of clutter, and I is an identity
matrix.

However, we have no knowledge of νt and rt. We use a linear
prediction scheme to estimate them. This prediction scheme is in
spirit similar to finding an affine flows for the current ‘best’ patch
in the next frame. Refer to [11] for details. As a consequence,
the prediction scheme produces an estimate of νt and a prediction
error εt. We take rt as a monotone function of εt. Also, we vary
the number of particles according to rt.

2.3. Occlusion detection and cancellation

When occlusion happens in one view, we need a mechanism to
detect it. We assume that occlusions produce large image dif-
ferences which can be treated as ’outlier’. Outlier pixels can-
not be explained by the underlying process. If a pixel x satisfies

|Ẑt(x) − µt(x)|/σt(x) > c (we take c = 0.75), we declare the
pixel an outlier. This actually corresponds to using a robust statis-
tics [5]. If the number of the outlier pixels in Ẑt, say dout, exceeds
a certain threshold, i.e., dout > λdtotal (we take λ = 0.13), we
declare an occlusion. Once occlusion is declared, we stop updat-
ing the appearance model and estimating the motion velocity and
start using the information derived from other views to maintain
tracking. To cancel an occlusion alarm, we compare the image
warped from the other views with our observation till the error is
consistently small. Tracking is then resumed.

3. OCCLUSION HANDLING WITH HOMOGRAPHY

We consider a wide baseline two view tracking system. Suppose
the distance between the cameras and the object to be tracked is far
enough to assume that the object moves on a dominant plane (e.g.,
consider a surveillance system in a parking lot and the dominant
plane is the ground plane). We then resort to the homography be-
tween the two views to handle occlusions in tracking. Suppose P
is a scene point lying on a plane π. Let p and p′ be the projections
of P in view 1 and view 2 respectively. Then there exists a 3×3
matrix Hπ such that p′ ∼= Hπp where Hπ is called the homog-
raphy matrix of the plane π [4]. For simplicity we will omit the
subscript of Hπ if there is no confusion in the following parts.

3.1. Homography estimation

Given a set of corresponding points xi ↔ x′
i, where xi come from

view 1 and x′
i come from view 2, and writing x′

i = (x′
i, y

′
i, ω

′
i)

T

with homogeneous coordinate, we can estimate the homography
H between the two views using x′

i × Hxi = 0 [4]. For each pair
of corresponding points, three linear equations are written as

⎡
⎣ 0T −ω′

ixi
T −y′

ixi
T

ω′
ixi

T 0T −x′
ixi

T

y′
ixi

T x′
ixi

T 0T

⎤
⎦

⎛
⎝h1

h2

h3

⎞
⎠ = 0 (3)

where hi, i = 1, 2, 3 is a 3×1 vector made up of the entries in the
ith row of H .

By stacking the coordinates of all the corresponding points
into a coefficient matrix A as shown in (3), H is the solution to
the linear equation Ah = 0 where h = (h1

T ,h2
T ,h3

T )T . For
a more accurate result, robust estimation methods like RANSAC
or LMedS estimation can be used. Before feeding into the linear
equation, the coordinates of all the points are normalized such that
the centroid of the points is the coordinate origin (0, 0)T , and their
average distance from the origin is

√
2.

Finding correspondences is always challenging, especially for
wide baseline views. Although H can be estimated from at least
4 pairs of corresponding points (the more we can find, the more
robust H will be) in the initial frame, it is more robust to uti-
lize the corresponding points in all frames. Assuming that the
object moves on the same dominant plane for all the frames, it
is clear that the corresponding points in all frames will contribute
in estimating H . Suppose n pairs of corresponding points xi ↔
x′

i, i = 1, 2, . . . , n on the object were picked in the initial frame,
then their corresponding relation is kept for all the frames (through
the inter-frame affine transformation T ’s known from the tracking
result) and can be used to estimate H . One assumption used here is
that for the corresponding points in the previous frames, after tak-
ing the affine transformations in both views for the current frame
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Fig. 1. Two view tracking result with the target partially occluded by an unknown object, with the appearance model At shown at the
upper right corner. Top row: tracking result for the un-occluded view. Middle row: tracking result for the partially occluded view without
occlusion handling. Bottom row: tracking result for the partially occluded view with occlusion handling

(i.e., we have yi ↔ y′
i where yi = T1xi,y

′
i = T2x

′
i), they are

still linked to each other with the same homography H as in the
previous frames. This assumption usually will not hold since an
affine transformation concatenated with a homography gives an-
other homography instead of another affine transformation. Con-
sidering this, we do not directly assume yi ↔ y′

i as the true cor-
responding points. Instead, after getting yi’s in view 1, we do a
random local search around y′

i’s in view 2 to find the correct cor-
responding points for yi’s. Nevertheless, since the tracker works
well enough in our experiment, which means the difference be-
tween the two frames can be satisfactorily described with an affine
transformation, we can always find the correct correspondences in
a very close neighborhood around y′

i’s.

3.2. Transformation inference for occluded view

Suppose at frame j occlusion is detected for view 2, but not for
view 1. Denote T j

1 and T j
2 as the affine transformations from

frame j − 1 to frame j for view 1 and view 2, respectively. We
need to derive T j

2 from H and T j
1 . Let xj−1 and x′j−1 be a

pair of corresponding points at frame j − 1 for view 1 and view 2
respectively. Then we have

xj = T j
1 xj−1; x′j = T j

2 x′j−1
, (4)

and
x′j−1

= Hxj−1; x′j = Hxj . (5)

Knowing H and T j
1 , it is easy to derive from (4) and (5) that

T j
2 = HT j

1 H−1. (6)

Although (6) gives a theoretically correct solution for T j
2 , it

gives a homography while the sought solution is an affine trans-
formation in accordance with the tracker. Practically T j

2 can be
obtained from x′j−1’s and the inferred x′j’s. Writing x′k =

(x′k, y′k, 1)T , k = j − 1, j, and T j
2 =

⎛
⎝α1 α2 tx

α3 α4 ty

0 0 1

⎞
⎠, we

have

(
x′j

y′j

)
=

(
x′j−1 y′j−1 0 0 1 0

0 0 x′j−1 y′j−1 0 1

)
⎛
⎜⎜⎜⎜⎜⎝

α1

α2

α3

α4

tx

ty

⎞
⎟⎟⎟⎟⎟⎠

.

(7)
A minimum of 3 pairs of corresponding points is needed to

solve for T j
2 from (7). To get a more robust solution, we want

to use all the points inside the tracking region to form an over-
constraint linear equation and seek the least square estimate. To
this end, we have to infer the coordinates for all the points in-
side the tracking region at frame j. Given 3 non-collinear points
pi, i = 1, 2, 3 on the image of an object, the relation between pi

′s
and any other image point q on the object stays invariant under
affine transformation T , i.e., if q−p1 = β1(q−p2)+β2(q−p3),
then we have T (q−p1) = β1T (q−p2)+β2T (q−p3). Recall
that up until frame j we have stored n(j − 1) pairs of correspond-
ing points in order to estimate H . With H and xi

j , i = 1, 2, . . . , n,
we can compute x′

i
j
, i = 1, 2, . . . , n with equation (5). Then the

coordinates for all the other points inside the tracking region can
be obtained accordingly. Here the number of initially picked cor-
respondence pairs n can be as few as 3 if they are non-collinear, so
the difficulty of finding enough number of correspondence points
in the initial frame is greatly reduced.

4. EXPERIMENTAL RESULTS

Experiments were conducted on the PETS2001 test sequence [12].
Fig. 1 shows the sequence that three walking people are visible
in all the frames for view 1, and are partially occluded by an in-
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Fig. 2. Two view tracking result with the target fully occluded by an unknown object, with the appearance model At shown at the upper
right corner. Top row: tracking result for the un-occluded view. Middle row: tracking result for the fully occluded view without occlusion
handling. Bottom row: tracking result for the fully occluded with occlusion handling.

coming vehicle in some frames and reappear afterwards for view
2. The appearance model At is shown at the upper right corner
of each frame. The top row of Fig. 1 shows the tracking result for
view 1 (the un-occluded view). The middle row shows the tracking
result for view 2 (the partially occluded view) without using ho-
mography to handle occlusion. We see that the appearance model
keeps updating even when there is occlusion, and the tracker stays
with the vehicle instead of the walking people. The bottom row
of Fig. 1 shows the tracking result for view 2 for handling oc-
clusion using homography. If there is no occlusion detected, the
two views are tracked independently. When occlusion is detected
in view 2, the appearance model ceases to update, and the affine
transformation is inferred from the tracking result for view 1 and
the computed H . It is clear that the tracker in view 2 still tracks
the walking people even when they are partially occluded by the
vehicle and regains control as soon as the people fully reappear.

Fig. 2 shows similar experiment results, except that the to-
be-tracked walking person is fully occluded by the tree in view 2.
The tracking results for view 1 (un-occluded view), view 2 ( oc-
cluded view) without using occlusion handling, and view 2 using
homography to handle occlusion are shown in the top, middle and
bottom rows of Fig. 2, respectively. We can see from the bottom
row that the tracker can track the person even though he is fully oc-
cluded by the tree, while the tracker stays where the tree is when
the occlusion is not handled (as shown in the middle row).

5. CONCLUSIONS

We have described a two view tracking approach which uses the
homography relation between two views to handle occlusions. An
adaptive appearance model is used in a particle filter to accomplish
single view tracking. We showed how to robustly estimate the ho-
mography with the previous tracking results and how to infer the
correct transformation for the occluded view with the estimated
homography and the tracking result for the un-occluded view. Ex-

perimental results show that the proposed multiple view tracking
method can follow the target when it is partially or fully occluded
by an unknown object. Our future work will extend this work to
multiple view tracking by fusing every two-view’s tracking result.
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