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ABSTRACT
An algorithm to detect and estimate a linear mixture of signals cor-
rupted by white Gaussian noise is presented. The number of sig-
nals is assumed to be unknown. The algorithm is based on a type
of information theoretic criterion capable of adjusting the proba-
bility of false alarm, and uses atomic decomposition refined by the
expectation maximization method to efficiently compute the max-
imum likelihood estimate of the signal parameters. Signals are
modeled as chirplets. Algorithm consistency and efficiency are
shown by simulation.

1. INTRODUCTION

The paper deals with the detection and estimation of the com-
ponents of a linear mixture of signals collected by a single sen-
sor. This problem arises in areas such as signal interception, also
termed spectrum surveillance, where typically neither the number
of signals nor their parameters are known. Our only assumption
is that signals belong to an a-priori-known set or dictionary. Since
the particular application is the interception of radar signals, the
selected dictionary is made of chirplets, i.e. Gaussian-envelope
functions with linear frequency modulation. Among other prop-
erties (e.g. optimum time-frequency concentration [1]), linear fre-
quency modulation makes the chirplet dictionary suitable to model
a wide variety of radar signals, specially those transmitted by low-
probability-of-intercept radars [2].

The proposed algorithm relies upon the use of an information-
theoretic criterion [3], whose structure is similar to other well-
known ones, such as the Akaike information criterion (AIC) and
the minimum description length criterion (MDL). Information cri-
teria have been typical tools in model order selection problems; re-
garding signal detection and estimation, they have been profusely
applied in areas such as array processing [3, 4]. In that area, most
of the papers have dealt with the application of the MDL and the
AIC, and the study of their asymptotic consistency (when increas-
ing the number of measurements). On the one hand, these criteria
present a limited aplicability since they fix the probability of false
alarm (���) [5]. On the other hand, we model the signals by the
parametric and deterministic chirplet model instead of the random
stationary Gaussian model commonly used in array processing;
therefore, provided that chirplets are time-limited, the asymptotic
consistency becomes a secondary issue, since more measurements
in time do not imply more information for time-limited signals.
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The proposed algorithm exhibits two important features. First,
the information criterion penalty function includes a multiplicative
constant to adjust the ���. ��� is defined as the probability of de-
tecting one or more signals for noise only, due to its importance in
real interception systems. Second, for a given model order, the
signals are sequentially estimated by the use of Atomic Decompo-
sition (AD) [6, 7, 8], and subsequently refined by the Expectation
Maximization method (EM) [9]. AD plus EM provides an effi-
cient manner to compute the maximum likelihood estimate (MLE),
which is hard to compute in a direct way even for a low number of
signals in the mixture (MLE is required for the cost function of the
information criterion [3]).

AD, also known as Matching Pursuit [6, 7], is an adaptive ap-
proximation technique expanding the signal onto an overcomplete
dictionary of elementary signals, called atoms (in this case, the
chirplet dictionary). In general, AD provides a compact, physically-
meaningful representation of signals, with better resolution than
other adaptive techniques like the Best Basis Selection [6, 7], and
with more efficiency than the Basis Pursuit [6]. The atoms es-
timated by the AD act as the starting point for the EM method.
The joint use of the AD and EM algorithms was suggested earlier
in [8].

The present work is an extension of the algorithm in [10],
based only on AD. It also extends the work in [11], where EM and
a “modified” AD were jointly applied to estimate the parameters
of a known number of signals. The paper is organized as follows.
Section 2 states the problem, addresses the application of the in-
formation criterion, and defines the MLE. AD, the EM method,
and their mutual relationship are described in Section 3. The al-
gorithm structure is described in Section 4, and its performance is
shown in Section 5 through a number of simulations. Finally, the
conclusions are drawn in Section 6.

2. THEORETICAL OVERVIEW

The problem of detecting and estimating the signals in a linear
mixture can be stated by the following hypothesis test:

�� � � � �

�� � � � �� � , (1)

where � is a complex, white, zero-mean, Gaussian noise of power
�
� (vector notation is used, and the signal length is denoted by� ).

The signal � is the linear mixture of� signals,
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� �
��
���

�� ��� . (2)

The signals ��� are unit-energy signals belonging to the a-priori-
known dictionary, � � ��� � � � ��. ����

�
��� are the corre-

sponding indices (usually finite-dimension vectors). Coefficients
����

�
��� are complex valued, and ����

� is the energy of each sig-
nal. A useful figure of merit is the energy-to-noise ratio (ENR),
defined as ���� � ����

� ��� for each signal.
The objective is to determine the number of signals (� ), and

their parameters, namely: �������� and ��������. The noise power
can be either known or unknown, so that an algorithm for each
case is devised. Let �� be the number of signals estimate, ��� is
defined as

��� � ���

��� � �
�

. (3)

Likewise, the probability of correct detection (���), missing de-
tections (���) and false detections (���) are given, respectively,
by

��� � ���

��� ��
�

, ��� � ���

��� ��
�

,

��� � ���

��� ��
�

. (4)

We follow an information criterion to estimate �� . In general,
information criterion approaches estimate the model order (�) by
minimizing a cost function of the form [3]

�	
�� � � �
� 	
�� ���	� � 

�� , (5)

where 	
�� ����	� is the pdf corresponding to the family of �th-

order distributions, and ����	 is the maximum likelihood estimate
(MLE) of the distribution parameters, i.e.,

����	 � ��� ��� 	
�� ���	� . (6)



�� is a penalty function of the model order depending on the
specific information-theoretic criterion considered. It is usually
split into two factors



�� � �
��

�� , (7)

where �
�� is a function of the number of observations (i.e.,
the signal length � ), and 

�� is the number of free parameters
associated to the family of �th-order distributions. For instance,
�
�� � � for the AIC, and �
�� � ��� �
�� for the MDL.

For the problem at hand, the model order coincides with the
number of signals in the mixture. Besides, �
�� does not fol-
low any predefined expression, but it is computed by simulation
to meet a given ��� value (Section 4). AIC or MDL will hold a
greater (smaller) ��� than the required value if their �
�� values
are smaller (greater) than the selected one. The computation of the
cost function (5) requires the MLE of the distribution parameters.
For the assumption of � signals, it becomes

����	 � 
���� ��
� � � � � ����� ��
� �
 �

��� ���
����

���

��
���

�� ����
� , (8)

for known �. If it is unknown, its MLE,

���� � �� �
��

���
��� �����

�

�
, (9)

has to be added to the parameter vector ����	.
2.1. The chirplet dictionary

The concrete form of Eqns. (5) and (8) depends on the utilized
dictionary. Regarding the chirplet dictionary, each chirplet is de-
fined by the four parameters vector � � ��� �� �� 	 �
 and has the
following unit-energy waveform:

��
�� �
��
�

����
��

�
�
���� 	� � ����	
���� 	�	����� 	

�� . (10)

� , 	 and � are the mean time, mean frequency, and chirp rate, re-
spectively. � is inversely related to the duration (�) of the chirplet:
� �

�
���, in the framework of Time-Frequency Analysis [1].

Chirplets are assumed to be time- and band-limited, and the sam-
pling rate is one. There are 6 free parameters per chirplet (the
coefficient is complex-valued); thus, for order �, the number of
free parameters becomes



�� �

�
�� , for known �,
�� � � , for unknown �.

(11)

3. ATOMIC DECOMPOSITION AND EM

For most dictionaries, including the chirplet one, the optimization
of (8) is numerically inefficient for � � �. The cost function is
highly dimensional, with many local maxima, and constant-valued
regions [10]. However, although still a hard problem, the opti-
mization of (8) is computationally feasible for � � �. Thus, the
sequential estimation of the signals arises as an efficient way to
compute (8) for � � �. This is performed by AD in a natural
way [6, 7, 8]. Let � be the signal under analysis, and � � ��� �
� � �� be the dictionary of atoms, AD obtains the expansion

� �
�
�

��� ���� (12)

by means of the equations [6, 7, 8]:

��� � ������
�

����
� ����

���� , (13)

��� � �


� ���� , (14)

where �� denotes the 
th order residual that are defined as

�� � ���� ���� ���� 
 � �� � � � , (15)

�� � � . (16)

AD approximates the MLE of (8) by splitting the q-signal es-
timation into � consecutive single-signal estimations; hence it is
suboptimal. We suggest the use of the EM method in order to im-
prove the MLE approximation. EM [9] is an iterative algorithm
that computes the MLE using a “completed” data space of the ob-
served data. Each iteration consists of an expectation step (E-step)
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AD
Estimation of the qth signal 

(the previous q-1 signals 
estimated by AD are used)

q=1

EM
Refinement of the q

signals estimated by AD

Local Minimum of the 
cost function in q-1?

Evaluation of the 
Information-Theoretic 

Measure IC(q) for order q

YES

NO

q-1 signals in the mixture.
Parameters obtained by 
EM in the (q-1)st iteration

q=q+1

Fig. 1. The block diagram of the detection and estimation algo-
rithm.

followed by a maximization step (M-step). By the space extension,
the MLE computation typically becomes simpler than directly us-
ing the observed data. In addition, under fairly general conditions,
EM converges to a stationary point of the likelihood function [9].
In our case, following the work by Feder and Weinstein [12], the
complete data are obtained by decomposing the observed signal �
into its components. Assuming a known number of signals in the
mixture (�), and an initial estimate of them, the error between the
signal under analysis (�) and its estimate becomes

� � ��

��
���

��� ���� . (17)

Then, the complete data estimate (E-step) are formed as

��� � ��� ���� � ��� , � � �� � � � � � , (18)

with the condition
��

���
�� � � (see [11] for details on the selec-

tion of weights ��) . The M-step computes the MLE of each ���,
i.e.,

��� � ��� ���
�

������ ������� , ��� � �
�

� ��� . (19)

This procedure iterates to refine the estimation. Interestingly, ev-
ery maximization in the M-step can be seen as the estimation of an
atom by the AD, so that the same optimization techniques can be
used.

4. ALGORITHM DESCRIPTION

The algorithm flowchart is depicted in Fig. 1. For the �th iteration,
the �th signal is estimated by AD. Using this and the � � � pre-
viously estimated signals, the EM refinement is carried out, and
the information criterion cost function (eqn. 5) is computed. The
algorithm should seek for the global minimum. Nevertheless, for
computational efficiency, it seeks for the first local minimum. This
approximate strategy has resulted in a very good performance for
the experiments evaluated (see the example in Section 5).

The AD algorithm is implemented by a global search algo-
rithm plus a gradient-search refinement due to the complex struc-
ture of the objective function in (13) [10]. In this case, the opti-
mization is carried out by a genetic algorithm followed by a Quasi-
Newton search. The reader may find the algorithm description
in [10] (the novelty here is the use of the chirplet duration � in-
stead of the parameter � in the Quasi-Newton search for conver-
gence reasons). For the optimizations of the M-step of the EM

method, only the above-mentioned Quasi-Newton algorithm is uti-
lized. Regarding the computational burden, the genetic algorithm
and the Quasi-Newton search take ��� second and 	�� second, re-
spectively (Pentium IV 2.4 GHz with 1 GB RAM using MATLAB
6.1; 1024-sample signals).

It is noteworthy to emphasize the efficiency of our algorithm
since only a new AD estimation (i.e. the most computationally
demanding step) is required every time the order � increases. For
the estimation by the AD of the �th signal, the previous � � �
signals estimated by the AD must be used. The use of the � � �
signals obtained by the EM refinement may lead to the divergence
from the MLE. Regarding 
��, if only the first local minimum is
sought, its definition turns out to be:


�� � 
��
��
��� 	 �
�	�� � 
��

����������� 
�� � 
�

�
,

(20)
where the threshold 
� is related to the information criterion by

� � � ���� for a known �. If � is unknown, the estimate ����
(eqn. 9) must be used; in addition, the threshold 
� is written as

� � � ��� ����������
���, which becomes 
� � � ����
for a small ����
� .

5. RESULTS

This section considers a very general multiple-signal example made
up of 6 chirplets with different parameters. Chirplets 1 to 4 are
time-shifted pulses with � � �	�� , � � �
��, � � 	, and mean
times ��	, �		, �		 and �		, respectively. Chirplets 5 and 6 have
the same mean time and frequency (
 � �		, and � � 	���). For
the chirplet 5, � � �	�� and � � � � �	��; for the chirplet 6,
� � �	�� and � � ��	��. Chirplets are uncorrelated except the
chirplets 5 and 6 (correlation coefficient ���), and the chirplets
3 and 6 (correlation coefficient ����). Its time-frequency repre-
sentation is shown in Fig. 2. The signal length is � � �	�� and
the noise power is �� � �. In the experiments, different ENRs
have been studied. Chirplets 1 to 5 have the same ENR, while
the ENR of the chirplet 6 is � dB higher. The algorithm of Sec-
tion 4 (using AD+EM) is analyzed for known and unknown noise
power. It is also compared with a version using only AD (no EM).

�� � �	�	 in all cases.

Figure 3 shows the performance in the estimation of the num-
ber of signals. When EM is used, the information criterion ap-
proach leads to a consistent estimate of the number of signals
for moderate ENRs (Moderate ENRs in the sense that they are
around � dB over the sensitivity of the matched filter detector,
��� � �� dB, for 

 � �	� and 
�� � �	�	).

This is related to the fact that the EM method provides an esti-
mate approaching the MLE when the ENR increases. The former
statement relies on: 1) in the experiment, the chirplet parameter
estimates attain the Cramer-Rao bound (CRB), and 2) the MLE
has been found to be statistically efficient for the considered prob-
lem when ENR increases [11]. However, when EM is not used,
estimation errors deviate from the CRB and even increase for a
high ENR. This results in the over-estimation of the number of
signals (Fig. 3, right). An illustration of the previous comments
on the estimation performance is in Fig. 4. The root mean square
error (RMSE) of the estimation of � and the corresponding CRB
are plotted for chirplets 5 and 6. The other parameters exhibit the
same behavior and are not displayed because of the limitation in
space.
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Focusing on the proposed algorithm (AD+EM), there are no
differences between the cases with known and unknown noise power
in terms of estimation performance. For detection, a slight degra-
dation appears when the noise power is unknown, due to the need
to estimate it. This is more clearly shown in Table 1, where the
sensitivity for each chirplet in the mixture is shown. Sensitivity is
defined as the minimum ENR for the chirplet to be detected by the
algorithm with a probability of ���. Losses range from ��� dB to
� dB.

Regarding the use of other information criteria, we have car-
ried out the same experiments using the MDL and the AIC instead
of the proposed information criterion. Since ���� is smaller for
these criteria (���� is �, ��� and �, for the proposed approach, the
MDL and the AIC, respectively), 	�� becomes greater: ��� for
the MDL, and approximately � for the AIC. The proposed infor-
mation criterion and the MDL estimate the true number chirplets
for 
�� � 
� dB; however, the AIC is not able to consistently
estimate the number of signals for 
�� � �� dB (the ENR is
referred to chirplets 1-5).

�
� � Chirplet 1 2 3 4 5 6

known �
�

�� �� �� �� �� ��

unknown �
�

���� ���� ���� ���� �� ����

Table 1. Sensitivity in terms of ENR (dB) for each chirplet in
the mixture for the cases with known and unknown noise power
(algorithm AD+EM).

6. CONCLUSIONS

This paper presents an algorithm to detect the number of signals
in a linear mixture corrupted by white Gaussian noise, and to es-
timate their parameters. It is based on an information-theoretic
criterion that, unlike others, permits the control of 	��. The algo-
rithm uses the AD and EM algorithms to efficiently estimate the
MLE. The consistency in estimating the number of signals as well
as the efficiency of the signal estimates have been shown by simu-
lation. The important role of the EM method has been pointed out
as well. The formal generalization of the properties shown by the
algorithm in the simulations would need, nevertheless, a further
investigation. Signals have been modeled as chirplets, although
the algorithm can be easily extended to other dictionaries.
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