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ABSTRACT

This paper studies the joint detection of bits for a new spread-
spectrum system based on random permutations. The proposed
technique can be regarded as a special case of discrete Linear Peri-
odic Time Varying �lters. As any spread-spectrum technique, this
method generates multi-access interference, which must be miti-
gated in order to retrieve the users’bits with acceptable bit-error-
rate. Thus, different detection strategies must be analysed regard-
ing their performance, their complexity and the available a priori
information. In this paper, an asynchronous model is considered,
and a linear minimum mean-square error (MMSE) detector �tted
to this model is investigated. Theoretical and simulated results are
provided, along with a comparison with the corresponding detec-
tor for CDMA systems.

1. INTRODUCTION

Spreading techniques are one of the prominent multiple access
schemes for 3G mobile cellular systems. DS-CDMA is a classical
technique for spreading a data signal. Nevertheless, other multi-
ple access schemes have equivalent spreading capabilities. Among
them, Linear Periodic Time Varying (LPTV) �lters can be pointed
out. The transformation given by an LPTV can be used for multi-
ple access purposes [6]. A special case of LPTV �lters called Peri-
odic Clock Changes (PCC) are useful for multiple access because
of their spreading properties [5], [6]. In this paper is investigated a
sub-class of discrete PCC called permutations. In a permutation, a
block of input samples ������

�
is transformed into a block of sam-

ples of same length with permuted samples: this operation can be
regarded as a particular discrete PCC [5]. Random permutation-
based Multiple Access (RPMA) together with the matched �lter
detector has been investigated in previous works [5], [6]. Con-
cerning CDMA systems, many detectors have been proposed in
the literature (see for instance [2], [3], [7] and references therein).
The purpose of this paper is to study a new detector based on a
linear Minimun Mean Square Error (MMSE) approach. Section 2
presents the asynchronous RPMA signal model in its continuous
and its discrete forms. Section 3 presents the MMSE detection
scheme, where a theoretical analysis is conducted. Section 4 is
devoted to simulation results. The near-far effect is investigated
and a comparison is carried out between the RPMA system and a
DS-CDMA system based on Gold codes.

2. PROBLEM FORMULATION
2.1. Modelling of the asynchronous signal

Denote � as the number of users. The �-th user sends a stream
of � bits �� � ������� � � � � ������

� , where ���	� � �������,

	 � ��� � � � � ��. The bit duration is equal to 
 and the wave-
form pattern with duration 
 is denoted ����. It is assumed that
an antipodal signaling waveform is used (for instance, an NRZ
or Biphase line code). Sampling the waveform pattern ���� with
 points gives � � ���� � � � � �� �� , where  represents the
spreading factor [1]. Without loss of generality, it is imposed that
���� � ��� � �. The coded bits of user �, when sampled with
 points per symbol, are given by �������

� � � � � � ������
� �� �

�� ��, where � � �� � �� is the �� ��� matrix de�ned by

� �

��� �� 	 � � �
	

. . .
. . .

� � � ��

���
(� denotes the Kronecker product, and �� is the identity matrix of
order �). A different permutation is assigned to each user. Each
permutation has a length �, which corresponds to a random per-
mutation on the set ��� � � � � ��. The permutation is applied on
the block of samples �� �� . Let �� denote the ��� � ���
permutation matrix associated to user �. The transmit scrambled
sequence for user � is ���� ��. Since the pattern ���� is binary,
the continuous-time signal transmitted by the �-th user is given by:

���
���

�
���

� ��

	
�
�



�� � � �



 � ��

�
where ���� denotes the �th component of any vector �, ���� is
the indicator function over �	�
� �, and �� � �	�
 � is the rel-
ative offset of user �. Here, we will consider an asynchronous
model, which means that offsets ��’s can be considered as inde-
pendent random variables uniformly distributed over the interval
�	� 
 �. This model is of particular interest for the uplink chan-
nel, where the system’s users generally transmit their data in an
asynchronous way. It is assumed in this paper that the transmis-
sion channel is a �at fading channel. Consequently, the continuous
time received signal can be expressed as:

���� �
��
���

��

���
���

�
���

� ��

	
�
�



�� � � �



 � ��

�
� ����

where �� � 	 is the received amplitude for the �-th user’s signal
and ���� is an additive white Gaussian noise (AWGN), indepen-
dent of the transmitted signals.

2.2. The discrete asynchronous model signal
The �rst step of the detection consists of passing the continuous
received signal ���� through a �lter bank, where �lters are matched

II - 10810-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



to the waveforms of all users and all bits. More precisely, one
de�nes the following variables:

����� �
�

�����



�� �� � ��





� ��

�
�� ,

� � �� � � � � ��
� � �� � � � � �

De�ne then vectors �
�

� ������� ���
�� � � � � ������� , � �

�� � � � � �, and � �

��
�
� ��

�
� � � � � ��

�

��
, which has length ��.

Then, � is a suf�cient statistic for the bits ������������������ .
Indeed, given the fact that the data are independent and equiprob-
able, and that the noise is AWGN, the optimal detector consists
of minimizing the error function

�
������ ������� �� with respect

to ������������������ , where ����� denotes the uncorrupted ver-
sion of ����. Now, it can be shown that this error function only de-
pends on the received signal ���� through the variables �����������������

����������. Consequently, the proposed detector is based on the
statistic �.

Moreover, the statistic � can be expressed in matrix form as
follows. Denote �� � ��

�
�

� ��, with �� � �	� � � � �  � �� and
�� � �	�
� �. Suppose without loss of generality that the users
are numbered in the increasing order of their offset, i.e. �� 	 �� 	
� � � 	 �� . Now, de�ne ���� � �

�

�� � ��
�	�
	� , ���� � �

�

�� �

��
�	�
	� (where ��
� � � if � � � and ��
� � 	 otherwise),
and ��� � �� �

�

�����
. Then, de�ne the���matrix ���

such that the �-th row of ��� is �	� � � � � 	� ����� ���� �
�
��� 	� � � � � 	�,

where ��� occurs at the �� � �� � ���-th column (in particular,
��� � ���). Then, it can be shown that � can be written as:

� � ����� �

where:
-� � ��������� � � � � �� �� ����� is a diagonal matrix con-

taining the receivers’amplitudes (��� is the �-vector with all
elements equal to �)�

- � is a����� block-diagonal matrix, whose �-th diag-
onal block is the �� � matrix ���� �

-� is a����� block matrix, whose block ��� 	�������
�����

is the ��� matrix ���� (note in particular that � is symmet-
ric)�

- � � ���� ��� � � � � �����
� is a zero-mean Gaussian vector

with covariance matrix  ��.

3. THE MMSE DETECTOR

3.1. Inverse Permutations
The �rst step of the detection consists of: �� performing the in-
verse permutation� ��� passing the data through a �lter matched to
the waveform ����. This yields to the de�nition of the �-length
vector variables:

!� � ���
� ��

� �����
�
����

��"���� ����
� �� (1)

where "�� �
�
���

�
��

���

�
���

�
�

(note that "�� � ���

and "�
�� � "��). The elements of "�� can be regarded as the

correlations between the bits of the �th and the 	th users. Denote"
as the����� block matrix whose block ��� 	� is"��, which can
also be written as " � ���� (hence, " is symmetric)� then, "

represents a measure of the Multiple-Access Interference (MAI).
Denoting � �

�
!�� � � � � � !

�
�

��
, one obtains:

� � ��� � ��������� � "��� �� (2)

where �� is a zero-mean Gaussian vector with covariance matrix
 �". If the MAI was zero, the optimal decision rule for the �-th bit
of the �-th user would simply be given by #��� �!����� (which is
the so-called matched-�lter detection). In the general case where
the MAI is non-zero, this detection scheme is no more optimal
since it exhibits an important near-far phenomenon � consequently,
different detection strategies must be developed. For instance, the
decorrelating detector has been studied in [1]. In this paper, a lin-
ear MMSE detector is proposed. The objective of this detector is
to retrieve the MAI from the discrete data �, without increasing
dramatically the additive Gaussian noise term.

3.2. Optimization Problem
It is assumed in this section that the user amplitudes �������������
are known by the receiver. Usually, the MMSE estimator of bit

����� is the value which minimises $

��������� �����
	��

with

respect to ������. The estimator is then given by $
�
�����

��� �.
Now, the problem is that the estimated value obtained for ������
is not in general in the set ���� ���. Instead, an alternative ap-
proach consists of deriving the linear MMSE estimator [7], i.e. the
estimator ������ is de�ned by

������ � #���
�
%���

� �
	

where %��� is the ����-length vector wich minimizes the mean-
square error

����� � $

��
������ %��

	��
(3)

with respect to % � �
���. Moreover, it can easily be seen, that

�� (or equivalently �) is a full-rank matrix� consequently, �� is
a regular matrix, and it exists a unique ���� � ���� matrix�� such that ���� � ���� . Now, since � � ���, we have

� � ���, and $
�
������ %��

���
� $

��
������ %� ���

	��
.

Consequently, the optimization problem (3) is equivalent to the
minimization of

$

��
������ �%� �	�� (4)

with respect to �% � �
��. Since this minimization has to be per-

formed for all ������������������, the problem can be written
in a matrix form as

��
�

$

������ �&�
����� (5)

where the minimization is with respect to the ����� ��� ma-

trices. In (5), the matrix norm is de�ned by ��� �
�
�����

����
where �� is the trace operator. It can then be shown as in [7] that

&'�
�
�� �&�

	
�

�
� �  ���"�

���
�� �& � &

	 �
"��" �  �"

� � �& � &
	�
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where & � ���
�
"�  ����

���
. The solution of (5) is then

obtained for �& � &. Consequently, the decision rule is given by

�� � #���
�
&�
�

i.e.,

������ � #���


��
" �  ����

���
�
	
��������

�
It must be pointed out that:

�when the (" is high, i.e. when  � �� 	,
�
"�  ����

���
can be approximated by"��, so that������  #���

�
"���

�
�������� .

Thus, the MMSE detector behaves in this case as the decorrelating
detector (see [1]).

� when the (" is low, i.e. when  � �� ��, the noise
term  ���� dominates the multiple-access term ". Therefore,������
� ���  #���


��
 ����

���
�
	
��������

�
� #����!����� �������. Hence, one obtains the matched �lter-decision.

Thus, the MMSE detector can be seen as a compromise be-
tween the matched-�lter and the decorrelating detectors.

3.3. Performance
Denoting � �

�
"�  ����

���
, it is straightforward to show,

using (2), that:��
"�  ����

���
!
	
��������

� �� ��"������������������ �����

�
��

���

��
	��

���	��������
�� ��"�����������������	 ����� � �������������

Consequently, since �� � 	 and ��"������������������ � 	,
the decision rule is de�ned by:

������ � #���

���������� ��
���

��
	��

���	��������

���	�������� � �����

��� 
where

���	��� �
�� ��"�����������������	
�� ��"������������������

and

����� �
�������������

�� ��"������������������

is a Gaussian random variable � �	�  ����� with

 ���� �  �
��"��������������������
�� ��"������������������

	� .

It can then be shown using Bayes’ formula that the BER for �����
is given by:

����� � 
���� �


�
���������

��
�



�
�����������

��
�



�
���������

)

!"
��
��

���

��
	��

���	��������
���	���*����

#
� ���

$
(6)

where)��� �
� ��
�

��
��
+�

����,. Now, the computational cost
of formula (6) grows exponentially with� and/or�: it is therefore
useless in practice. However, using the Central Limit theorem, for
large � and/or �, it is possible to consider

��
���

��
	��

���	��������
���	��������

as a zero-mean Gaussian variable with variance
��
���

��
	��

���	��������

�
���	���

	�
.

Consequently, one obtains the following approximation:

�����  )

������

���� ����� ��
���

��
	��

���	��������

�
���	���

	���� 
������ (7)

Moreover, the probability of error (6) or (7) has been derived for
�xed users’ offsets ���� � � � � ���. Now, these offsets are random
variables uniformly distributed over the interval �	� 
 �. Conse-
quently, a mean probability should be obtained by computing the
expectation of (6) or (7) with respect to these� random variables.
However, a closed-form expression for this mean probability is not
available, and Monte-Carlo simulations must be performed in or-
der to estimate it (see section 4).

4. SIMULATION RESULTS

The theoretical results have been con�rmed by a large number of
Monte-Carlo simulations. Fig. 1 shows the theoretical and sim-
ulated BER’s obtained with the MMSE detector. The parameters
used for these simulations are the following: � � � users, � � �
bits per user, and a spreading factor equal to � �� the users’ am-
plitudes�� are all equal to �, and the non-orthogonal permutations
are randomly selected. The offsets (normalized by 
 ) are: 	�	
�,
	���
�, 	�����, and 	��
�, respectively. �			 Monte-Carlo runs
have been conducted to yield these results. Clearly, these lat-
ers validate the theoretical derivations (obviously, the simulated
curves have greater variance for low BER’s, since in that case the
number of runs required to obtain accurate estimates is very large).
The results are very similar for the different bits and the differ-
ent users (for instance, the curves for ���
� and ����� are almost
identical). Note however that, even for equal amplitudes, the er-
ror probability may slightly vary for different bits and/or different
users: indeed, different correlations between bits of the same users,
or between bits of different users, are assigned by the random per-
mutations. Now that the theoretical results have been con�rmed by
simulations, only theoretical curves will be shown in the following
�gures.
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10-4
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B

P2(2)
P1(1)

P1(2)

P2(1)

Fig. 1: Theroretical and simulated BER’s of the MMSE detector
for constant users’energies.

Fig. 2 considered the near-far problem encountered in mul-
tiple access systems. Here, the parameters are unchanged with
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respect to �g. 1, except that the users’amplitudes are now equal to
��	� �� �� ��. The results are very close for all users. In particular,
the BER is not a monotonic decreasing function of the amplitudes:
for instance, �� is greater than �� and ��, while �� is greater
than �� and ��. Consequently, this �gure proves that the MMSE
detector eliminates a signi�cant part of the MAI.
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Fig. 2: BER’s of the MMSE detector for different users’energies.
Moreover, the theoretical results presented in �g. 1 and 2 are

obtained with �xed offset values ���� � � � � ���. Fig. 3 shows the
BER’s obtained with the same parameters as in �g. 1, with differ-
ent offsets drawn uniformly on the set �	�
 �� , as well as the mean
BER’s. This �gure proves that the values of the offsets are not that
much signi�cant for the detector performance.

-4 -2 0 2 4 6 8

10-1

SNR

T
E
B

10-2

10-3

Fig. 3: BER’s for different sets of offsets (dotted lines), and mean
BER computed from these sets (bold line).

The RPMA system considered in this paper is next compared
with the DS-CDMA for the MMSE detectors (designed for the
corresponding multiple-access techniques). The CDMA results
have been obtained using Gold codes (see [7]). The parameters
are identical to those of �g. 1. The Gold codes have length �,
which is comparable to � � for the random permutations. Thus,
the spreading factor is equal to 8 for permutations and 7 for Gold
codes. Here, a set of Gold codes is de�ned by a particular choice of
4 codes among 9 possible codes, along with a random delay from
0 to 6 chips. Now, the choice of a particular set of permutations
or codes in�uence the performance of the considered multiple ac-
cess technique. Therefore, it is not very meaningful to compare
the BER’s given by only few permutations or codes. It has then be
decided to present the error probability curves given by 100 ran-
dom permutations and 100 code sets. Fig. 4 and 5 superimpose
the results obtained for the permutations and for the Gold codes,
respectively. It can be noted that both multiple access techniques
give very similar performance.

5. CONCLUSION
In this paper, the multiple access based on random permutations
has been studied in the asynchronous case. A linear MMSE detec-
tor has been developed and analysed. The advantage of the MMSE

detector is that it attempts to reduce simultaneously the multiple-
access interference and the additive noise. The theoretical study
has been validated by Monte-Carlo simulations. The choice of the
permutations has been discussed in [1]: brie�y, it was explained
that an optimal set of permutations could be obtained by using
particular optimization algorithms such as MCMC algorithm or
genetic algorithm. The MMSE approach for RPMA has also been
compared with the equivalent detector designed for DS-CDMA,
where it has been shown that both methods behave very similarly.
Finally, the case of frequency-selective channels is currently under
investigation: it is expected that in such cases, the RPMA sys-
tem perform better than the CDMA system since it includes in its
principle an interleaving process, which should make the RPMA
system more robust with respect to selectivity.
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Fig. 4: BER’s for 100 different random permutation sets.
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Fig. 5: BER’s 100 different Gold code sets.
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