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ABSTRACT

This communication studies a measure of detection performance
for testing binary hypotheses by using discrete test statistics. This
measure is the area under the receiver operating characteristics.
This theory is applied to the detection of changes in low-flux im-
ages with the Neyman Pearson detector. An approximation of this
measure can be derived. It allows to define a specific signal to
noise ratio for the low-flux detector.

1. INTRODUCTION

Bayesian decision theory has received much attention in the signal
processing literature (see [1] and references therein). Bayes de-
tection strategy requires to define costs associated to correct and
wrong decisions as well as prior probabilities for each hypothesis.
When such information is not available, most common tests (such
as the Neyman-Pearson test) try to minimize appropriate functions
of the probability of non-detection (PND) and the probability of
false alarm (PFA). In such situations, the Receiver Operating Char-
acteristic (ROC) is a very common measure of performance for the
test. The ROC represents the probability of detection (PD) as a
function of the PFA. As a consequence, the PD can be computed
from the ROC, for any value of PFA. The PD can then be used to
specify the test performance.

However, specifying the exact value of PFA in a practical ap-
plication can be a real problem. For this reason, some global mea-
sure of performance can be preferred. Barrett et al. proposed to
measure the performance of a test by computing the area under
the ROC, referred to as AUC [2]. Different expressions of AUC
were derived in [2] by assuming known some characteristics re-
garding the test statistic. For instance, expressions of AUC were
derived in the Gaussian context or for known moments of the test
statistics. All material presented in [2] was obtained for contin-
uous test statistics. The AUC was used in [3] as a measure of
performance for targets detection in active imagery. This paper ad-
dresses the problem of determining the AUC when the test statis-
tic is a purely discrete random variable. The concept of AUC for
a discrete test statistic is formulated in section 2. Expressions of
AUC as functions of probability masses and characteristic func-
tions are presented in sections 3 and 4. Section 5 derives a closed
form-expression of AUCs for a low flux detection problem. Sec-
tion 6 studies an approximation of AUC for the Neyman-Pearson
test obtained by expanding in Taylor series the moment-generating
function of the test statistic. Theoretical results are validated by
simulations. Conclusions are reported in section 7.

2. PROBLEM FORMULATION

We consider a standard binary hypothesis problem which can be
formulated as follows

� �
rejected if � � 	 � � �

accepted if � 
 	 � (1)

where � � � � � � � � � � � � � is the observation vector, � is the test
statistic and 	 is a threshold depending on the PFA. This paper as-
sumes that � is a purely discrete random variable taking its values
in the countable set  � # % ' � * , . 0 under both hypotheses

� �
and

� � . By denoting as 1 3 � % ' � � 8 9 � � % ' < � 3 = the probability
mass of � at point % ' under hypothesis

� 3 , the PFA and PND for
the test (1) can be classically defined as follows:

8 ? @ � CD F G I 1 � � % ' � � 8 M O � CD F Q I 1 � � % ' � � (2)

As a consequence, in the � 8 ? @ � 8 M O � plane, there is a count-
able number of operating points corresponding to all possibles val-
ues of 	 . For instance, consider a test statistic � distributed ac-
cording to a Bernoulli distribution under hypotheses

� �
and

� � .
In this case  � # Z � [ 0 and the ROC reduces to three operating
points � Z � Z � � � 1 � � [ � � 1 � � [ � � and � [ � [ � corresponding to the three
following situations 	 ` Z , 	 , = Z � [ = and 	 b [ .

The idea of using the entire ROC curve to define a detection
performance measure was suggested in [2]. Different expressions
of the AUC were derived in the case of a continuous test statistic � .
This paper addresses the problem of determining the AUC when
� is a discrete random variable under hypotheses

� �
and

� � .

3. AUC VERSUS PROBABILITY MASSES

3.1. Bernoulli test statistics

This simple example is interesting since it provides a simple ex-
pression of the AUC. The AUC can be computed as the sum of a
triangle area and a trapeze area:

d f h � [i j 1 � k 1 �
i � (3)

where 1 � � 1 � � [ � and 1 � � 1 � � [ � . This equation shows that the
detection performance is an increasing function of 1 � k 1 �

which
equals �m when 1 � � 1 �

(the worst case) and [ when 1 � k 1 � � [
(the best case).
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3.2. Poisson test statistic

The probability masses of the Poisson distribution under both hy-
potheses are denoted as � � � � � � � � 	 � � � � � � � � 	

� � . Straightfor-
ward computations allow to express the AUC as follows:

� � � � � � � � 
 � � � � � � � � � � � �� � � 
 � � � � � � � � � � � (4)

where

� � � � �
�

�� � �

�
�

�
� �

� �
�� � � � �� � � � � � � �

�
�� � �

� �
�� � � �

�� � � (5)

Appendix A shows that (4) can be simplified into the following
closed-form expression:

� � � � � � � � 
 � � � � � � �
� � � �

 � �� � "
� # � % �

� � & � � � � � �

�� � � 
 � � � � � � %
� � � & � � � � � � (6)

where

% �
� ( � is the modified Bessel function of the first kind of

order ) [4].

4. AUC VERSUS CHARACTERISTIC FUNCTIONS

The AUC can be expressed as a function of the characteristic func-
tions of � under hypotheses

� �
and

� � . More precisely, by de-
noting as * �

� , � � & � � � � � . / 0 � � �
	 the characteristic function of

� under hypothesis
� �

, the following result can be obtained [2]:

� � � � �� � �� � 1 3 5 7 * � � , � * :� � , � ; ,, � (7)

where 3 indicates that the singular integral must be interpreted
as a Cauchy principal value. This expression is interesting when
the probability masses of � have no simple expressions under hy-
potheses

� �
and

� � (see section < for an example). However, the
computation of the Cauchy principal value can be a problem. This
section explains how (7) can be used to compute

� � �
in the two

previous cases.

4.1. Bernoulli test statistic

The characteristic functions can be easily computed in this trivial
example:* � � , � * :� � , �, � ) � ) � � = � = �, � ) � = � � � � � . /, � = � ) � � � � . /, � (8)

By using the standard results 3 � ? // � � , and @ B � D E/ ; , � � � 1 � sgn � . � ,
where sgn � . � is the signum function and sgn � , � � , , the AUC can
be computed by using (7) and yields the same result as in (3).

4.2. Poisson test statistic

This example presents the methodology which can be applied to
compute the Cauchy principal value of (7). The characteristic
functions of � under both hypotheses can be computed (we use
the same notations as in section F � �

) and lead to:

* � � , � * :� � , � � H J L � � � � � � � . / 	 H J L � � � � � � . / 	� � � � � � � (9)

By expanding into Taylor series the two last exponentials appear-
ing in the right hand side of (9), the following results can be ob-
tained:* � � , � * :� � , �, � � � 
 � � � � � � �

�� � �
�

� � � �
� �

�� � � �
�) � � � � . 
 � � � � /, � (10)

Consequently, the AUC can be expressed as

� � � � �� � �� � � 
 � � � � � � �
�� � �

�
� � N� � � �

�� � � �
�) � sgn � ) � � � � (11)

which reduces to (6) after straighforward simplifications.

5. APPLICATION TO LOW-FLUX IMAGERY

The evaluation of detection performance by using the AUC is illus-
trated in this section by a low-flux detection problem. This prob-
lem occurs for example in extra-solar planet detection from photo-
metric signals. In this case, the 1 recorded data P R are distributed
according to Poisson distributions under both hypotheses:

� � T P R V Poisson � W � � � � T P R V Poisson � W � Z \ R � � (12)

where \ R denotes the point spread function of the system (with the
normalization condition _ 3R �

� \ R � � ). The Neyman-Pearson
detector for this problem expresses as:

� �
accepted if � � � Z �

3
�R �

� ` R P R 4 6 � (13)

where ` R � b c d � � � f g \ R � .
Eq. (13) shows that the distribution of � � Z is a mixture of

discrete Poisson distributions. Unfortunately, the determination of
the probability masses of � under both hypotheses is very compli-
cated in the general case. The performance of this test was studied
in [5] under high-flux assumption when W is large (by using Gaus-
sian approximations).

This section determines the performance of the Neyman-Pearson
detector (12) in terms of AUC under the low-flux assumption (which
precludes the Gaussian approximations). The AUC can be com-
puted since the characteristic functions of � under both hypotheses
can be easily derived from (7). Indeed, by using the independence
property between the random variables P R , the following results
are obtained:

* � � , �� � � � . / f � � � 3 g H J L  3
�R �

�
W � � � � . j k / " �

* :� � , �� � � . / f � � � 3 g � f H J L  3
�R �

�
� W � Z \ R � � � � . j k / " �

(14)

After replacing the expressions (14) in (7), AUC can be com-
puted numerically. As explained before, the characteristic func-
tions * � � , � and * � � , � can be expanded into Taylor series, in order
to circumvent the numerical problems associated to the principal
value appearing in (7). The following results are then obtained:

� � � � �� � �� �� m � : � n � m �
sgn

 3
�R �

� ` R � ) R � � R � " � (15)
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where
� � � � � � � � � � � � � , � � � � � � � � � � � � � and

� � � �
� 	 
 � 
 
 � � 
 � �� � � � �� �� �

�
� � �

� �� �
� � 
 � � � � �

� �� �� �
� � � � � (16)

The determination of AUC by (15) requires high computational
cost for large values of 
 , � , 
 . In this case, it is interesting to use
the approximated AUC derived in [2]. This is the purpose of the
next section.

6. LIKELIHOOD-GENERATING FUNCTION

When the test statistics � is the log-likelihood ratio, the moment-
generating functions of � under hypotheses

� �
and

� � satisfy the
relation � � � � � � � � � � � � � where � � � � � � � � 	 � � � � � � , [2].
This allows to express AUC as follows:

 " $ � �% � �%  ! " # $ 	 
 � % 
 � 
 	 
 � % � � � � �� ) � � (17)

where
� � � � � 
 � ) %  ! � ) �
 � ) 
 � %  ! � � �
 � and 
 � � � is a

so-called likelihood-generating function defined as:


 � � � � * + , � � � � � �
 �
� � ) �
 � � � � �
 � � (18)

Since the exponential factor in (17) falls off rapidly as � increases,� � � � can be expanded in a Taylor series around � � - :

� � � � � %
-

.� � �

 / 
 � 0

� - �
� % � � � 2 %  ! � � �% 4


 �
� (19)

which shows that AUC depends on the derivatives of 
 � � � at � �
- . Assume that 
 � � � can be approximated by a linear function
near the origin. The Taylor series (19) can be truncated after � � �
which yields:

 " $ �  " $ � � �% � �% erf

2 �% � % 
 � - � 4 � (20)

where erf � � � is the error function.
It is interesting to note that for a Gaussian distributed log-

likelihood ratio, 
 � � � is constant and the approximation (20) is
an equality. Indeed, the mean and variance of � under hypoth-
esis

� �
are necessarily linked by the relation � � � ) �
 � 
�

, the
moment-generating function under hypothesis

� �
is � � � � � �5 6 8 � � 
9
 � � 
 ) � � � and 
 � � � �

� 
9
 .

In the low-flux imagery problem defined in section  , the mo-
ment generating functions of � can be computed under hypotheses� �

and
� � . This allows to compute the corresponding likelihood-

generating function:


 � � � � ) � � ) � ; % ) 
 
 � 
 < �� �
� 	 = � / � > �

? 
 0
� � ) �
 � � � � �
 � (21)

Consequently, the AUC can be approximated by (20) with:


 � - � �  # � % � 
 
 ) 
 �
.� �

� $ � � � 
 � � & (22)

A first order expansion of 
 � - � for large values of 
 yields:


 � - � � � 
' 
 �
.� �

�
� 
� � ) � �

; 
 � (23)

This result is in perfect agreement with the snr obtained for the
high flux detection problem defined in [5] as follows:

� � A B � E + � 
 � 
 � � � � A B � E + � 
 � � � � � 
 � � (24)

Note that the likelihood-generating function introduced before can
also be used to derive a lower bound for the AUC. More precisely,
the following result can be obtained [2]:

 " $ 9  " $ - � � ) �% 5 6 8 2
) 
 � - �% 4 � (25)

This lower bound is valid without approximation as soon as � is
a log-likelihood ratio. It provides a lower bound for AUC which
depends on 
 � - � only.

Note that the bound
 " $ -

and the approximation
 " $ �

in-
crease when 
 � - � gets larger. The parameter 
 � - � can be viewed
as a signal to noise ratio for the detection problem (12).

Figure 1 shows the variations of
 " $

, its approximation
 " $ �

and the lower bound
 " $ -

as a function of parameter 
 . This fig-
ure has been obtained with 
 � � , � � � . The summation in (15)
has been appropriately truncated to ensure an accurate value of
AUC. The validity of the approximation is clearly demonstrated.
However, the lower bound appears to be very loose for the problem
(12).
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Fig. 1.
 " $

,
 " $ �

and
 " $ -

versus 
 for 
 � � .

Figures 2 and 3 show the variations of
 " $ �

as a function of
 for � � � and various sets of parameters = 
 � � � @ . The param-
eters � � in the two figures correspond to two different sampling
schemes of the same point spread function (PSF). For each figure,
the increase of 
 results in an oversampling of the same PSF.

The detection performance increases when 
 decreases as ex-
pected (see (22)) . The performance also increases when 
 de-
creases. This last result must be analyzed by taking into account
the renormalisation of the � � for each value of 
 . Moreover, for
the same value of 
 , the performance is better in figure 3 than fig-
ure 2. This can be explained by (23). Indeed, for the same value
of 
 , the energy � / � < �� �

� � 
� is higher in figure 3 than in
figure 2. The last simulation depicted in figure 4 shows the varia-
tions of

 " $ �
as a function of � for 
 � � .

 " $ �
is obviously an

increasing function of � .

II - 1071

➡ ➡



 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  1  2  3  4  5

A
U

C
a

f

α=1
α=(0.8, 1, 0.8)/2.6

α=(0.8, 0.9, 1, 0.9, 0.8)/4.4
α=(0.8, 0.9, 0.95, 1, 0.95, 0.9, 0.8)/6.3

Fig. 2.
� � � �

versus � for different � ; � � � 	 , 0.33, 0.20, 0.14.
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Fig. 3.
� � � �

versus � for different � ; � � � 	 , 0.55, 0.27, 0.17.

7. CONCLUSION

This paper has provided new results for the detection of changes
in a Poisson distribution for low-flux imagery. The performance
of the Neyman Pearson detector for this problem is difficult to
obtain analytically. We have proposed to measure the detection
performance by the area under the ROC (AUC). An accurate ap-
proximation of the AUC has been derived. This allowed to define
a so-called signal to noise ratio for the low-flux detection problem.

8. APPENDIX A

This appendix derives the expressions of
� � � 
 and

� � � � for a
test statistic distributed according to a Poisson distribution. Denote

as � � � � � � �
� ��

� �

� � �
� � . The indices of the sums � � � 	 � � �

�
	 �

� � � � � �
and � � � 	 �

� � � � � � belong to the lower triangle and the diagonal of
the square � � � � � � � 
  � � � � � � � � 
  . By summing on the diagonals
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α=(0.8,0.9,0.95,1,0.95,0.9,0.8)/6.3

Fig. 4.
� � � �

versus � for different � .

of this square, the following results can be obtained:

� 
 � � � � � � � � � 
 �
�

$ � 	 �
�

$
�

	 � � � � % � � � � �
�

$ � 	 �
� �

� � �
$

�
	 �

� � � � 
 � �
� � % � � � � � �

�
�

$ � 	 �
� � �� 
 �

� ! � " �
� ' # � � � 
 � �

where

" �
� % � is the modified Bessel function of the first kind of

order � [4]. The second term
� � � � can be computed similarly

since

� 
 � � � � � � � � � � �
�

$
�

	 � � � � � � � �
"

� � ' # � � � 
 � � (26)

Combining the previous results, the AUC can be expressed as fol-
lows

� � � � 	 * � * 
 � � � � � � �
$ � 	 �

� � �� 
 �
� ! � " �

� ' # � � � 
 � %

	' � * 
 � � � � � � "
� � ' # � � � 
 � � (27)
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