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ABSTRACT

Magnetic resonance force microscopy (MRFM) is a tech-

nology that will potentially enable microscopy of molecules

and proteins at atomic–scale detail. Physicists are pursuing

MRFM and single electron spin microscopy (SESM). Many

technological challenges exist for MRFM and SESM to de-

liver on the promise of “visualizing” a single electron spin.

The forces of interest are in the subattoneNewton and at-

toneNewton range (10−18 N). In this paper we consider the

problem in MRFM and SESM of detecting extremely weak

signals buried in noise with SNR in the range of -15 dB

to -40 dB. We describe a model that, although simplistic,

captures the features of the problem. We present a GLRT

and bootstrap approach that incorporates a bank of Viterbi

algorithms, and show by simulations that, with physically

realistic parameter values, the detector can achieve proba-

bility of detection β = 0.9 with false alarm rate α = 0.05,

at SNR= −20 dB.

1. MOTIVATION

Magnetic resonance force microscopy (MRFM), [3], and

single spin microscopy, [2], are being actively researched as

an enabling technology for non–invasive, non–destructive

atomic–scale imaging. MRFM’s goal is to provide the

ability of current optical microscopes but at nanoscales–

to be able to observe in their environment, with chemical

specificity, molecules and protein with atomic scale details.

MRFM borrows from magnetic resonance imaging (MRI),

but, MRI is a bulk phenomena, ruled by Boltzman statis-

tics, and involving averaging effects over millions of spins,

while MRFM and SESM aim at sensing isolated and indi-

vidual spins.

(1)This work is supported by the 3D Atomic Resolution imaging pro-

gram (formerly known as MOSAIC) from DARPA (DSO) with UCLA as

the prime contractor. (2) This work was performed when P.-J. Chung was

with Department of Electrical and Computer Engineering, Carnegie Mel-

lon University.

The basic principle of MRFM and SESM is simple. The

spin signal of interest is measured from the deflection of

a cantilever. The cantilever deflects due to the interaction

between a spin–spin system— one spin in the magnetic tip

of the cantilever (the sensor), the other spin in the sample

of material being microscoped. The sample and sensor are

placed in a rapidly oscilating magnetic field (RF) that flips

the magnetic moment of the spin, which induces a forced vi-

bration on the cantilever. By shining light on the cantilever,

a laser based optical inferferometer transduces the mechan-

ical deflection into an optical and finally electrical signals.

MRFM and SESM face many challenges, from design

and fabrication of cantilevers, to detection of extremely weak

signals that detect the presence of the desired spin. The

forces of interest are very small, in the 10−15 ∼ 10−20

Newton range, as are the mechanical displacements. From

a signal processing point of view, the problem lies with the

very low signal to ratios (SNR), in ranges of −15 to −40
dB.

We consider in this paper a very simplistic version of

the problem. We introduce a simplistic model that still cap-

tures some of its very significant aspects namely, the phase

switching typical of spin systems in quantum mechanics.

We then develop for this model detectors based on the gen-

eralized likelihood ratio test (GLRT), and bootstrap. The

GLRT is used because besides the unknown phase switch-

ing process, for the model to be realistic for MRFM and

SESM, parameters like the amplitude of the signal com-

ponent should be assumed unknown. Bootstrap is needed

because the distribution of the test statistic under the null

hypothesis is unknown.

The GLRT incorporates a bank of Viterbi algorithms,

where each Viterbi assumes a particular value of the ampli-

tude of the switching process. Simulation results are very

encouraging, showing that at probability of false alarm α =
0.05 the probability of detection β = 0.9 at SNR= −20 dB.
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2. PROBLEM FORMULATION

The MRFM signal is modeled as a sinusoidal wave of known

frequency modulated by a phase switching process

s(t) = Ãx(t) cos(ωt + φ), (1)

where Ã, ω, φ denote the amplitude, frequency and ini-

tial phase, respectively. The phase switching process x(t)
is modeled as a telegraph process. By definition, x(t) =
aejk(t)π , where a is a random variable taking values +1
and −1 with equal probability and k(t) is a Poisson process

with parameter ν.

As the frequency ω is known, the data can be down

shifted to baseband, lowpass filtered and sampled with fre-

quency fs. The pre–processed data is expressed as

st = Axt, xt ∈ {1,−1} (2)

where A = Ã cosφ and the switching process xt is a first

order discrete–time Markov process with transition proba-

bilities

q = p(xt = 1|xt−1 = 1)=p(xt = −1|xt−1 = −1)

=
1
2

+
1
2

exp(−2ν

fs
), (3)

q̄ = p(xt =−1|xt−1=1)=p(xt =1|xt−1 =−1)
= 1 − q. (4)

From the physical point of view, q is the probability that

the spin stays in the same state from the current sample to

the next sample. With properly selected fs, q usually lies

between 0.90 and 0.99. We assume A and x unknown.

Let yt denote the noise corrupted observation of st. De-

tecting the discrete signal st is formulated as the hypothesis

test

H0 : yt = nt 1 ≤ t ≤ T

H1 : yt = st + nt 1 ≤ t ≤ T, (5)

where nt is a white Gaussian noise process with zero mean

and known variance σ2.

In the following section, we shall derive a likelihood ra-

tio (LR) test statistic.

3. GENERALIZED LIKELIHOOD RATIO TEST

Our detection scheme is based on the generalized likelihood

ratio test (GLRT) [4]. Let f0(·), f1(·) denote the likelihood

function under H0 and H1, respectively. The logarithm of

the likelihood ratio is given by

λ = max
A,x

log f1(y; Ax) − log f0(y) (6)

where A represents the signal amplitude, x = [x1, . . . , xT ]
is the state sequence and y = [y1, . . . , yT ] collects the ob-

servations from t = 1 to T . According to the signal and

noise model defined previously, (6) can be expressed as

λ =
T∑

t=1

[
1
σ2

(Âx̂t)yt −
1

2σ2
(Âx̂t)2 + log p(x̂t|x̂t−1)

]

(7)

where Â, x̂ = [x̂1, . . . , x̂T ] denote the maximum likelihood

estimate of A, x, respectively. Let α, tα denote the false

alarm rate and the corresponding threshold, respectively.

The signal is detected when λ > tα. Otherwise no signal is

detected.

Maximizing the log–likelihood logf1(y; Ax) is greatly

simplified by applying the well known Viterbi algorithm [5].

To apply the Viterbi algorithm to maximize logf1(y; Ax),
we need to know A, which is unknown. We address this

problem by dividing the parameter space of A into discrete

points A1, . . . , AM and running a bank of M Viterbi algo-

rithms with each tuned to one of these values. This pro-

vides an efficient way of finding the most likely amplitude

and state sequence in the maximum a posteriori probability

sense of a process assumed to be a finite–state discrete time

Markov process.

One difficulty encountered in the proposed approach is

that the distribution of the test statistic under H0 can not

be determined analytically. Thus we can not find the value

of the threshold directly. To solve this problem, we apply

the bootstrap test that requires little knowledge about the

distribution of the test statistic.

4. BOOTSTRAP TEST

The bootstrap [1], [6] requires little prior knowledge on the

data model. The key idea of bootstrap is that, rather than

repeating the experiment, one obtains the “samples” by re-

assignment of the original data samples. We give a brief

description of the basic concept and then introduce our test

procedure. For more details, the reader is referred to [6] and

references therein.

Basic concept Let Z = {z1, z2, . . . , zM} be an i.i.d.

sample eset from a completely unspecified distribution F .

Let ϑ denote an unknown parameter, such as the mean or

variance, of F . The goal of the following procedure is to

construct the distribution of an estimator ϑ̂ derived from Z .

The bootstrap principle
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1. Given a sample set Z = {z1, z2, . . . , zM}
2. Draw a bootstrap sample Z∗ = {z∗1 , z∗2 , . . . , z∗M}

from Z by resampling with replacement.

3. Compute the bootstrap estimate ϑ̂∗ from Z∗.

4. Repeat 2. and 3. to obtain B bootstrap estimates

ϑ̂∗
1, ϑ̂∗

2, . . . , ϑ̂∗
B .

5. Approximate the distribution of ϑ̂ by that of ϑ̂∗.

In step 2., a pseudo random number generator is used to

draw a random sample of M values, with replacement, from

Z . A possible bootstrap sample might look like Z∗ =
{z10, z8, z8, . . . , z2}. Given the sample set Z , the bootstrap

procedure can be easily adapted to calculate a confidence

interval of ϑ̂ or construct a hypothesis test.

For the problem testing the hypothesis H0 : ϑ = ϑ0

against H0 : ϑ �= ϑ0, we define the test statistic as

T̂ =
|ϑ̂ − ϑ0|

σ̂
(8)

where σ̂2 is an estimator of the variance of ϑ̂. The inclusion

of σ̂ guarantees T̂ is asymptotically pivotal. The following

procedure solves the problem when the distribution of the

test statistic can not be determined analytically.

Bootstrap test

1. Resampling: Draw a bootstrap sample Z∗.

2. Compute the bootstrap statistic

T̂ ∗ = |ϑ̂∗−ϑ0|
σ̂∗ .

3. Repeat 1. and 2. to obtain B bootstrap statistics.

4. Ranking: T̂ ∗
(1) ≤ T̂ ∗

(2) ≤ . . . ≤ T̂ ∗
(B)

5. Testing: Reject H0 if T̂ ≥ T̂ ∗
(L) where L is chosen

such that L = �(1 − α)(B + 1)�.

Detection of the phase process As i.i.d. samples are

assumed in the bootstrap procedure, the detection scheme

in section 3 is modified. We divide the observation y into

M non–overlapping data blocks of length T/M

y1, y2, . . . , yM . (9)

To ensure independence between data blocks, one can drop

the last sample of each block. The statistic (7) is computed

independently for each data block

λ1, λ2, . . . , λM . (10)

We consider these as i.i.d. samples from a random variable

Λ. For computational simplicity, we estimate the mean of Λ
in the bootstrap test.

More precisely, the hypothesis testing specified by (5) is

reformulated as

H0 : ϑ = µ0,

H1 : ϑ �= µ0, (11)

where ϑ = EΛ is the mean of Λ and µ0 = E[Λ|yt =
nt, 1 ≤ t ≤ T ] is the mean of Λ when the data contains

only noise. The sample mean 1/M
∑M

m=1 λm is used as

the estimator ϑ̂. In this particular case, σ̂ is given by the es-

timate of the standard deviation

√
1

M−1

∑M
m=1(λm − ϑ̂)2.

As the distribution of Λ can not be determined analytically,

µ0 needs to be estimated by using training data that contains

only noise.

The proposed detection scheme is summarized as fol-

lows.

Bootstrap detector

Input: y = [y1, y2, . . . , yM ], µ0

1. Maximizing log–likelihood of ym over A,x,

to obtain Âm, x̂m, m = 1, . . . , M .

2. Compute λm, m = 1, . . . , M .

3. Bootstrap test.

Output: signal detected or not

In order to the reduce computational cost, we suggest an

approximation to the above procedure. Instead of maxi-

mizing the log–likelihood of ym over Am and xm, we es-

timate A from the first data block y1 by maximizing the

corresponding log–likelihood f1(y1; Ax1). We assume that

the estimate Â1 from a data block is a good estimate for

A2, . . . , AM . In the subsequent data blocks y2, . . . , yM , the

log–likelihood is maximized over the state sequence using

a fixed value of Â1 in the Viterbi algorithm. Steps 2. and 3.

remain the same.

5. SIMULATION RESULTS

The detector in sections 3 and 4 is applied to simulated base-

band data. As the signal of interest is very weak compared

to noise, the SNR varies from −35 dB to −5 dB in 2.5 dB

steps. The SNR is defined as 10 log(A2/σ2). In the first ex-

periment, we consider the data length T = 105 or 8 × 105,

false alarm rate α = 0.05, and a transition probability of

q = 0.95. In the second experiment, the transition probabil-

ity q is given by 0.99. The number of trials in each experi-

ment is 100.

Fig. 1 shows that the probability of detection increases

with growing SNR. The longer data length T = 8 × 105

leads to a better performance than that of T = 105. For SNR
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Fig. 1. Probability of detection vs. SNR. SNR= [−35 : 2.5 : −5] dB,

α = 0.05, q = 0.95, T = 105, 8 × 105 , M = 20.

< −22.5 dB, the chance of detecting a signal is less than

0.1. For SNR > −15 dB, the probability of detection is very

close to 1. Comparing the behavior of both curves between

−22.5 and −15 dB, it is easy to see that the threshold is

lowered by 2.5 dB by using a longer observation.

Fig. 2 presents simulation results from the second ex-

periment with q = 0.99. Both curves look similar to those

in Fig. 1. However, the threshold region is 2.5 dB lower

than when q = 0.95. The transition probability q = 0.99
corresponds to a lower rate of phase jump than q = 0.95. In

this case, the estimate for the state sequence x is more ac-

curate when a signal is present. This should lead to a higher

degree of correlation between the observation and the esti-

mated signal. Hence, the detector performs better.

From Fig. 2 we see that at probability of false alarm

α = 0.05 the detector provides a probability of detection

β = 0.9 at SNR= −20 dB. This is a promising result that

bodes well for MRFM.

6. CONCLUSION

Detection of a weak sinusoidal signal with random phase is

studied and tested. A telegraph signal is used to model the

random phase. Signals of this kind are of particular impor-

tance in MRFM and single electron spin microscopy. Due

to signal incoherence, conventional methods designed for

coherent waves are no longer applicable. Additional chal-

lenges include low SNRs and limited observation time. To

achieve best performance, we developed a detector based

on a GLRT. As the threshold can not be determined analyt-

ically, bootstrap is applied to the detection procedure. Sim-

ulations show that the GLRT detector provides satisfying
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Fig. 2. Probability of detection vs. SNR. SNR= [−35 : 2.5 : −5] dB,

α = 0.05, q = 0.99, T = 105, 8 × 105, M = 20.

results at very low SNRs. Moreover, the detection perfor-

mance improves as the data length increases.
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