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Abstract— Hyperspectral imaging (HSI) sensors can provide
very fine spectral resolution that allows remote identification of
ground objects smaller than a full pixel. Traditional approaches
to the so-called subpixel target signal detection problem involve
the estimation of the sample covariance matrix of the background
from target-free training pixels. This entails a large training re-
quirement and high complexity. In this paper, we investigate para-
metric adaptive modeling and detection for HSI applications. To
deal with non-stationarity in the spectral dimension that is char-
acteristic of HSI data, we introduce a sliding-window based time-
varying (TV) autoregressive (AR) modeling and detection tech-
nique, by which the spectral data is sliced into overlapping subvec-
tors for parameter estimation and signal whitening. Experimen-
tal results using real HSI data show that the proposed parametric
technique outperforms conventional detection schemes, especially
when the training size is small.

I. INTRODUCTION

Adaptive signal detection from hyperspectral imaging (HSI)
data has received significant interest recently [1]. A challeng-
ing problem for HSI applications is the so-called subpixel target
signal detection, whereby the target object occupies only a por-
tion of a full pixel. Traditional approaches to this problem rely
on an estimate of the background covariance matrix obtained
from target-free training pixels for interference or background
suppression [1]. Such techniques suffer two drawbacks, namely
a large training requirement and high complexity. In particu-
lar, reliable estimation of the background covariance matrix re-
quires a large number of target-free training pixels, which may
not be available in a non-homogeneous environment. Mean-
while, the covariance matrix has to be estimated and inverted
for each test pixel, which involves significant computation.

To address the above issues, we consider in this paper para-
metric models that capture the characteristics of HSI data in the
spectral dimension, and exploit such models for efficient target
signal detection. Adaptive target signal detection based on mul-
tichannel parametric modeling has been successfully utilized in
airborne radar systems equipped with an antenna array [2], [3].
Extending the idea for HSI applications, however, is challeng-
ing since, unlike the former case where the interference and
radar clutter can be approximated reasonably well to be station-
ary under mild conditions, HSI data is highly non-stationary
in the spectral dimension. To deal with non-stationarity, we
consider a sliding-window based time-varying (TV) autoregres-
sive (AR) modeling and detection technique, by which we slice
the spectral data into overlapping subvectors for parameter es-
timation and signal whitening. Experimental results using real
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HSI data show that the proposed parametric technique outper-
forms conventional schemes, especially when the training size
is small.

II. PROBLEM FORMULATION

HSI data is usually described as a datacube, whose face is
a function of the spatial coordinates and depth is a function of
spectral bands or wavelengths. Each pixel can be represented
as an L × 1 real-valued vector: x = [x(0), x(1), . . . , x(L −
1)]T , where L denotes the total number of spectral bands, x(l)
denotes the spectral response at the lth spectral band, and (·)T

denotes transpose. Since HSI data has non-zero mean [1], [4],
a preprocessing stage is usually invoked to remove the sample
mean estimated using neighboring pixels.

In vector notation, the subpixel target signal detection prob-
lem is described by the following composite hypothesis test [1]:

H0 : x = b, target absent

H1 : x = as + b, target present
(1)

where x ∈ R
L×1 is the demeaned test pixel, s ∈ R

L×1 is
the signature vector of the target object with amplitude a, and
b ∈ R

L×1 denotes the background plus system noise. We adopt
the standard assumption that the signature vector s is determin-
istic and known to the detector;1 the amplitude a, however, is
assumed unknown. For the background, we follow a statisti-
cal approach that models the background interference b as a
multivariate Gaussian random vector with zero mean and co-
variance matrix Rb � E{bbT }. The Gaussian assumption has
been experimentally justified for multispectral data (e.g., [4]),
and the extension to HSI data is widely adopted [1]. It leads to
mathematical tractability and, most importantly, provides good
performance in many practical situations.

The problem is to find the decision rule for hypothesis testing
(1), given knowledge of the test pixel x, target signal signature
s, and a number of training pixels {xn}N

n=1 that are target-free.

III. CONVENTIONAL TECHNIQUES

If the covariance matrix Rb is known exactly, the optimum
detector for (1) is the matched filter (MF) [5]:

|sT R−1
b x|2

sT R−1
b s

H1

≷
H0

tMF, (2)

1The spectral signature may vary due to variations in atmospheric conditions
and other factors. Such uncertainty can be captured by a linear mixing model
[1].
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Fig. 1. Sample estimates of the autocorrelation function (ACF) at frequency
lag 0 (variance), lag 1, lag 2 and lag 3 across the spectral bands.

where tMF denotes the MF threshold. In practice, the unknown
Rb is usually replaced by some estimate, such as the sample
covariance matrix: R̂b = 1

N

∑N
n=1 xnxT

n , where {xn}N
n=1 de-

note a set of training pixels, assumed target-free. Using R̂b in
(2) leads to the adaptive matched filter (AMF) [5]:

|sT R̂
−1

b x|2
sT R̂

−1

b s

H1

≷
H0

tAMF, (3)

where tAMF denotes the AMF threshold. Another popular de-
tector is the adaptive coherence estimator (ACE) test [6]:

|sT R̂
−1

b x|2
(sT R̂

−1

b s)(xT R̂
−1

b x)

H1

≷
H0

tACE, (4)

which can be thought of as a normalized version of the AMF
test (3). The normalization incurred by the ACE test is impor-
tant since it accounts for power variations between the training
and test data. By the Schwartz inequality, the ACE test statistic
is bounded between zero and one.

Both the AMF and ACE tests have constant false alarm rate
(CFAR). They also suffer two drawbacks. The first is a large
training requirement. The covariance matrix Rb has a dimen-
sion of L×L. Typical values for L in real HSI systems are in the
range of hundreds. An accurate estimate of the covariance ma-
trix would require a large number of target-free training pixels,
which may not be available, especially in non-homogeneous
environments. The second is high complexity, since Rb has to
be estimated and inverted for each test pixel.

IV. PARAMETRIC ADAPTIVE MODELING AND DETECTION

It is well-known that the interference suppression ability
of the MF detector (2) comes from a whitening procedure.

Specifically, the whitening operation takes as inputs the signa-
ture vector s and test pixel x, and outputs whitened versions
s̃ � R

−1/2
b s and x̃ � R

−1/2
b x. Following the whitening, the

MF reduces to simple correlation of the whitened outputs:

|s̃T x̃|2
s̃T s̃

H1

≷
H0

tMF. (5)

If the whitening operation can be designed or approximated via
a parametric model without explicitly estimating Rb, then it is
conceivable that fewer training pixels are needed, provided that
the parametric model is described by a few parameters. This is
the essence of parametric model based adaptive detection.

Autoregressive (AR) models have been popular choices for
parametric modeling in various applications [7]. Parametric
adaptive detection based on multichannel AR models has been
considered in [2], [3], [8] for airborne radar systems equipped
with multiple antennas. For the problem under study, the L× 1
background vector b, or equivalently the observed signal x un-
der H0, may be assumed to be a scalar AR process which pro-
duces the L samples of b. If an AR model is appropriate for HSI
data, then the detection problem amounts to first estimating the
AR coefficients from training data, whitening the signals by a
whitening filter constructed from the AR coefficient estimates,
and computing the decision statistic from the whitened signals
followed by thresholding. For brevity, the above approach is
referred to as the parametric adaptive matched filter (PAMF),
or normalized PAMF (NPAMF) [8] if the decision variable is
normalized, similar to the normalization imposed by the ACE
detector of (4).

We have tested an AR-based version of PAMF/NPAMF with
real HSI data and found they work poorly since AR models are
in general not suitable for HSI data. In particular, HSI data are
non-stationary in the spectral dimension while fixed parameter
AR models characterize stationary processes. To see this, we
have computed the sample covariance matrix R̂b, from a total
of K = 24 × 46 = 1104 training pixels drawn from a ho-
mogeneous grass region. Figure 1 depicts the main and 3 sub-
diagonals of R̂b, which correspond to the autocorrelation func-
tion (ACF) at frequency lag 0 (i.e., variance), lag 1, lag 2 and
lag 3, respectively, versus the spectral bands. Clearly, the signal
is not stationary since the variance and ACF at other lags vary
significantly across the spectral bands.

To deal with non-stationarity, we consider a time-varying
(TV) 2 AR modeling technique. Specifically, we slice xn �
[xn(0), . . . , xn(L − 1)]T that corresponds to the nth train-
ing pixel into L − Ls + 1 overlapping subvectors: xn(l) �[
xn(l), . . . , xn(l + Ls − 1)

]T
, l = 0, . . . , L − Ls, where

Ls ≤ L denotes the length of the subvectors. Equivalently,
these subvectors can be thought of as being obtained through a
sliding window of size Ls. For small enough Ls, each subvec-

2Frequency-varying would be a more appropriate term for the HSI spectral
data. Nevertheless, we will retain TV because the spectral data are essentially
treated and analyzed using time series analysis techniques.

II - 1058

➡ ➡



tor xn(l) can be modeled as an M th order AR process:

xn(k) = −
M∑

m=1

am(l)xn(k − m) + wn(k),

k = l, l + 1, . . . , l + Ls − 1; n = 1, . . . , N.

(6)

Note that different subvectors are associated with different sets
of AR coefficients. For simplicity, we consider fixed AR model
order M . The choice of M and window size Ls should be
made with tradeoffs among several issues. A large M might
be desirable since it can provide better fitting to the HSI data.
Increasing M , however, would require the window size Ls to
increase accordingly since more parameters are to be estimated
and, therefore, more data should be provided within each sub-
vector to reduce the variance of parameter estimates. Finally, if
Ls is too large, the assumption of stationarity within the sub-
vector may be violated, which can cause significant degrada-
tion. Our studies show that the following choices in general
provide good tradeoffs among the above issues:

8 ≤ Ls ≤ 15, M = �Ls/2�, (7)

where �·� denotes the flooring operator.
Once we have made choices for Ls and M , the next step is to

estimate the TV-AR coefficients {a(l)}. While there are a mul-
titude of estimators available, the least squares (LS) estimator
[7] is considered here. Let

a(l) �
[
a1(l), . . . , aM (l)

]T
,

yn(l) �
[
xn(l + M), . . . , xn(l + Ls − 1)

]T
,

Y n(l) �

⎡
⎢⎣

xn(l + M − 1) . . . xn(l)
...

...
...

xn(l + Ls − 2) . . . xn(l + Ls − M − 1)

⎤
⎥⎦ .

The LS estimates of the TV-AR coefficients based on (6) using
N training pixels are given by

â(l) = −
(

N∑
n=1

Y T
n (l)Y n(l)

)−1 (
N∑

n=1

Y T
n (l)yn(l)

)
,

l = 0, 1, . . . , L − Ls.

(8)

The matrix within the first pair of brackets is assumed full rank.
This can be ensured with probability one if the number of train-
ing pixels N satisfies the following condition: N ≥ M

Ls−M .
Following parameter estimation, a TV moving-average (MA)

filter, defined by the TV taps {âl(m)}M
m=1, is formed to whiten

the test pixel x and target signature s (cf. (1)) as follows:

ε(l) =x(l) +
M∑

m=1

âm(l − Ls)x(l − m),

u(l) =s(l) +
M∑

m=1

âm(l − Ls)s(l − m), l = Ls, . . . , L,

where ε(l) and u(l) denote the lth output sample of the TV-
whitening filter when the input is x and s, respectively. Effec-
tively, each set of AR coefficient estimates is used to compute
only one output sample; as the sliding window shifts to the next
position, we use the next set of AR coefficients for whitening.

Finally, the outputs of the TV-MA whitening filter corre-
sponding to the test pixel x and target signature s, respectively,
are correlated to one another to form the decision variable. The
resultant test is referred to as the TV-PAMF, or TV-NPAMF if
the decision variable is normalized:∣∣∣∑L

l=Ls
u(l)ε(l)

∣∣∣2(∑L
l=Ls

u2(l)
) H1

≷
H0

tTV-PAMF, (9)

∣∣∣∑L
l=Ls

u(l)ε(l)
∣∣∣2(∑L

l=Ls
u2(l)

) (∑L
l=Ls

ε2(l)
) H1

≷
H0

tTV-NPAMF. (10)

There is an additional small modification to the above TV-
PAMF/TV-NPAMF detectors. In particular, we found that HSI
data exhibit small oscillations, which do not contribute much to
detection, meanwhile making parameter estimates more noisy.
Lowpass (LP) filtering to first remove those oscillations before
applying the above TV-AR modeling appears helpful. For low-
pass filtering, we have used a simple FIR moving-average filter
with impulse response given by a Kaiser window, whose length
is equal to the sliding window size Ls and the shape parameter
is 3 (not critical). After the FIR lowpass filtering, we follow the
procedure of TV-PAMF or TV-NPAMF. The resulting methods
are called the TV-LP-PAMF or TV-LP-NPAMF detectors.

V. EXPERIMENTAL RESULTS

We have compared our NPAMF, TV-NPAMF and TV-LP-
NPAMF detectors with the ACE detector (4) using real HSI
data. Only the normalized detectors are considered here since
their test statistics are bounded between 0 and 1, which makes
it convenient to compare. The results corresponding to their
non-normalized counterparts, i.e, AMF, PAMF, TV-PAMF and
TV-LP-PAMF, are similar to those presented below, for the case
considered here, and are thus omitted.

Figure 2 shows a simulated color infrared (IR) view of an
airborne hyperspectral data flightline over the Washington DC
area. The data contains L = 191 spectral bands in the 0.4 to
2.4 µm region of the visible and IR spectrum. Other informa-
tion about the data set can be found in [9]. The image shown
in Figure 2 was made using bands 60, 27 and 17 for the red,
green and blue colors, respectively. The results to be presented
are with respect to a test region highlighted in yellow in Fig-
ure 2, which is relatively homogeneous and formed by grass.
We have tested with other regions and obtained similar results.
To simulate the H1 condition, we superimpose a target signal
to the test pixel. The target signal corresponds to the spectral
signature of a man-made object, and is scaled according to dif-
ferent target fill factors [1]. The figure of merit considered here
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test region 

Fig. 2. HSI image of the Washington DC Mall with L=191 spectral bands.
The test region is highlighted in yellow.

is the separation of test statistics under H0 and H1, which is
also used in [1]. For all methods, we use N = 8 training pix-
els, which correspond to a 3 × 3 region without counting the
center pixel (i.e., test pixel), for sample covariance matrix or
AR coefficient estimation. The sample covariance matrix R̂b

is rank deficient in this case. As suggested in [1], we use the

approximation R̂
−1

b ≈ I − U1U
T
1 , where U1 is formed by

the principle eigenvectors of R̂b, for the ACE detector. For the
parametric methods, the AR model order is set to M = 5, and
for the TV parametric methods, the subvector length (i.e., slid-
ing window length) is Ls = 10.

Figures 3(a) to 3(d) depict the test statistics separation for the
four detectors, namely ACE, NPAMF, TV-NPAMF and TV-LP-
NPAMF, respectively, as a function of the target fill factor. We
note that NPAMF is the worst of all detectors, which suggests
that stationary AR modeling is not adequate for the problem.
Both TV-NPAMF and TV-LP-NPAMF outperform the ACE
test. TV-LP-NPAMF is slightly better than TV-NPAMF. Specif-
ically, we see that the former achieves full target-background
separation when the fill factor is 0.25, while the latter does not.

VI. CONCLUDING REMARKS

We have explored parametric modeling and investigated its
applicability in HSI systems. We have shown that HSI data
are non-stationary in the spectral dimension, which makes para-
metric adaptive modeling and detection significantly more chal-
lenging than some earlier works that assume the data is sta-
tionary. To deal with non-stationarity, we have proposed a
sliding-window based TV-AR modeling scheme, and developed
the corresponding parameter estimation, whitening, and detec-
tion techniques. The proposed scheme is shown to outperform
the popular ACE detector, in particular when the training size
is small. In our experimental study, we have considered only
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Fig. 3. Target-background separation versus target fill factor, where the red
(dark) bars correspond to the range of test statistics under H1, while the green
(light) bars show the counterpart under H0. (a) ACE. (b) NPAMF. (c) TV-
NPAMF. (d) TV-LP-NPAMF.

homogeneous background. Spatial heterogeneity may be dealt
with by training selection methods based on power sorting [10],
and will be examined in the near future.
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