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ABSTRACT

A method for evaluating both the robustness and detection
performance of constant false alarm rate (CFAR) detectors
is presented in this paper, which is based on the powerful
methodology of influence function (IF) developed in the
literatures on robust statistic. The robustness of different
kinds of CFAR detectors can be evaluated and compared
by calculating the first derivative of the false alarm proba-
bility (FAP) at an underlying distribution, which is named
IF-FAP. From the analysis of IF-FAP, several conclusions
are given here: the robustness of detector can be asymptoti-
cally represented by the IF of clutter power estimator, while
the detection performance can be approximately evaluated
by the asymptotic variance of clutter power estimator which
is an explicit functional of the corresponding IF.

1. INTRODUCTION

Constant False Alarm Rate (CFAR) radars employ adaptive
threshold techniques for automatic signal detection. The
Cell Averaging (CA) CFAR detectors perform optimally in
uniform Rayleigh clutter. The Ordered Statistic (OS) CFAR
methods have been proven to work satisfactorily in both
multiple-target and nonuniform-clutter situations [1][2].
These detectors achieve CFAR while the distribution pa-
rameters vary. However, as well known, if the clutter dis-
tribution deviates from presumption, their performance will
degrade, and the false alarm probability will not be con-
stant anymore. To solve these problems, some robust CFAR
methods have been proposed and discussed in recent litera-
tures [3][4]. ”Robustness” is often characterized by the per-
formance of detection in inhomogeneous clutter, or by the
variation extent of false alarm probability and CFAR loss.
However, robustness is usually referred to as a vague con-
cept due to the lack of quantitative measures. This paper
addresses this problem and proposes an approach based on
Influence Function (IF) to evaluate robustness and detection
performance of CFAR detectors.

Influence function was invented by Hampel in [5]. It
is widely used to evaluate the robustness of statistics. It
is defined by the derivative of a statistic at an underlying

distribution:

IF (x; θ, F ) = lim
t↓0

θ((1 − t)F + t∆x) − θ(F )
t

(1)

where ∆x is the probability measure which puts mass 1 at
the point x(x ∈ R), and θ(F ) is the asymptotic value of
{θn(X1, · · · , Xn); n ≥ 1}, X1, · · · , Xn are the observa-
tions with distribution F . The importance of IF lies in its
heuristic interpretation: one could say it gives a picture of
the infinitesimal behavior of the asymptotic value, so it mea-
sures the asymptotic bias caused by contamination in the
observations [5].

The IF was introduced into radar applications to mea-
sure the variation gradient of False Alarm Probability (FAP)
caused by the disturbance on clutter distributions, which is
named IF-FAP [6]. Some basic results were provided in [6],
including the IF-FAP of CA- and OS-CFAR detectors and
a computational simulation to verify the theoretical results.
Further results are presented in Sect. 2.1.

From the robustness point of view, Hampel introduced
some important summary values of the IF [5]. The most
important one is the supremum of the absolute value, which
was defined by

γ∗(θ, F ) = sup
x

|IF (x; θ, F )|, (2)

the supremum being taken over all x where IF (x; θ, F ) ex-
ists. This value is named the gross-error sensitivity, mea-
sures the worst influence that a small amount of contamina-
tion of fixed size can have on the estimator. Moreover, an
estimator minimizing γ∗ is called most B-robust. The con-
cept of most B-robust is used in Sect. 2.2 to find the most
robust one among some certain kind of CFAR detectors.

From the efficiency point of view, Hampel discussed the
asymptotic variance of estimator which is closely related to
IF by

V (θ, F ) =
∫

IF (x; θ, F )2dF (x). (3)

Under the assumption of asymptotical normality, the asymp-
totic variance V (θ, F ) of {θn;n ≥ 1} at F is given in

LF (
√

n(θn − θ(F ))
weakly−→ N(0, V (θ, F )) (4)
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when n → ∞, where LF means ”the distribution of ... un-
der F”. It is proposed in Sect. 3 that there is a close rela-
tionship between the asymptotic variance of clutter power
estimator and the detection performance of CFAR detector.

2. ROBUSTNESS EVALUATED BY IF-FAP

2.1. Robustness Measures Derived from IF-FAP

If we replace the statistic θ by the false alarm probability
Pfa in the radar application, the corresponding IF-FAP is
given by

IF (x; Pfa, F ) = lim
t↓0

Pfa((1 − t)F + t∆x) − Pfa(F )
t

(5)
which describes the effect on the FAP variety of an distri-
bution contamination. It forms an influence curve when x
takes the value along the real axis. The ability of IF-FAP
to evaluate the robustness of detectors will be shown as fol-
lows.

In general CFAR detection problem, the signal under
test x(t) is usually obtained at the output of a square or lin-
ear law detector, and is simply described as

xi(t) = i ∗ s(t) + n(t) i = 0, 1 (6)

For i = 0, only the noise n(t) is assumed to be present
and this is actually the background clutter. For i = 1, both
the signal s(t) and the clutter are assumed to be present. A
CFAR detector always gives the same probability of false
alarm Pfa which can be pre-defined using the proper value
for the threshold T . Assuming that the test statistics {zk; k =
1, 2, · · · } are obtained through a square law detector, the
value of T and the Pfa are related as follows:

Pfa = P (z > T µ̂) =
∫

R

∫ ∞

T µ̂

dF (z)dG(µ̂) (7)

where F (z) is the cumulative distribution function (cdf) of
clutter samples, µ̂ is an estimation of clutter power µ0, and
the distribution of statistic µ̂ is given by G(µ̂) which de-
pends on the F (z) and the structure of the estimator.

Substitute (7) to (5), the result of IF-FAP of CA-CFAR
with n reference cells is given as follows:

IFFAP (x;F ) =
∫

R

∫ ∞

Tµ̂n

d(−F + ∆x)(z)dG(µ̂n)

+
∫

R

∫ ∞

Tnµ̂n

dF (z)d
∂G(µ̂n)

∂t

= −Pfa + G(x/Tn) +
∫

R

∫ ∞

Tnµ̂n

dF (z)d
∂G(µ̂n)

∂t
(8)

where ∂G(µ̂n)/∂t denotes the effect on the G(µ̂n) variety
of the distribution contamination mixing with F . Then the

first two items of the above equation denote the FAP variety
rate due to the distribution contamination of the test cell,
while the last item denotes that of the reference cells.

These CFAR detectors converge to the optimum detec-
tor when n → ∞, where the clutter power is already known
as µ0 = µ̂(F ), and G(z) = ∆µ0(z) , so

IFFAP (x; F ) =
∂

∂t
[
∫ ∞

T0µ̂(H)

dH|H=(1−t)F+t∆x
]

=
∫ ∞

T0µ0

d(−F + ∆x) − T0 · IF (x; µ̂, F )f0(T0µ0)

= −Pfa + ∆T0µ0(x) − T0 · IF (x; µ̂, F )f0(T0µ0) (9)

where f0 is the probability density function corresponding
to F . It can be proven that (8) converges to (9) at every
x ∈ R (but not uniform convergence). Moreover, all items
in (9) are invariant along with the detector structure ex-
cept for IF (x; µ̂, F ). Thus, we focus on the properties of
IF (x; µ̂, F ) instead of IF-FAP itself and use it for describ-
ing the robustness of a group of CFAR detectors with the
same structure and any number of reference cells. When
Pfa and f0 are changed to Pd and f1 (f1 denotes the prob-
ability density of clutter plus target), (9) turns to be the IF
of detection probability, so the robustness of IF of detec-
tion probability can also be represented by IF (x; µ̂, F ) and
needs no special discussion. After that, the gross-error sen-
sitivity of IF (x; µ̂, F ) given by (2) can be used to evaluate
the robustness of CFAR detectors.
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Fig. 1. The IF-FAP of CA-CFAR detectors with different
number of reference cells.

As an example, the IF-FAP of CA-CFAR detector with
difference number (n = 10, 30, 90,∞) of reference cells
are shown in Fig. 1, where it is supposed that the output of
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the square law detector obeys the exponential distribution,
i.e., F (z) = 1 − e−z/µ0 , and µ0 = 1, Pfa = 10−6.

2.2. Robustness Measures of Detectors Based on OS

From the result above, we mainly focus on the robustness
of estimator µ̂n which can be asymptotically replaced by
functional µ̂(F ). Then, equation (9) is also applicable for
those CFAR detectors based on order statistics.

Consider those clutter power estimates in the CFAR de-
tectors based on order statistics, {µ̂n; n ≥ 1} are named
L-estimators, which are of the form

µ̂n(X1, X2, . . . , Xn) =
n∑

i=1

aiXi:n, (10)

where X1:n, · · ·, Xn:n are the ordered samples and the ai are
coefficients. A natural sequence of estimators is obtained if
the weight ai are generated by ai =

∫
[(i−1)/n,i/n]

h(u)du,

where h : [0, 1] → R satisfies
∫
[0,1]

h(u)du > 0. Then the
corresponding functional is

µ̂(K) =
∫

xh(K(x))dK(x)
c
∫

h(F (x))dF (x)
, (11)

It is Fisher consistent because of the standardization, where
c is a multiplier ensuring µ̂(F ) = µ0, and its IF is

IF (x; µ̂, F )=

∫
[0,x]

h(F (y))dy−∫
[
∫
[0,r]

h(F (y))dy]dF (r)

c
∫

h(F (y))dF (y)
.

(12)
The IF of all the CFAR estimators based on order statis-

tics can be achieved by (12), and three typical examples are
given below where we assume that the underlying distribu-
tion F (x) = 1 − e−x/µ0 :

• When h = δ(α), 0 < α < 1, the detector corresponds
to the OS-CFAR [1]. So c = F−1(α)/µ0 = − ln(1 − α).
Its IF and gross-error sensitivity respectively are

IF (x; µ̂, F ) = − 1
α′ lnα′ [

1 + sgn(x + ln α′)
2

− α′], (13)

γ∗(α) =
{ −1/ lnα′ α ≤ 1/2

−α/(α′ lnα′) α > 1/2 ,

where α′ = 1 − α. Then the most B-robust OS-CFAR de-
tector is achieved at α = 1/2 which minimize γ∗ to 1/ ln 2,
the corresponding estimator is the median µ̂n = X[n/2]:n.

• When h = 1[α,1−β], 0≤ α < 1 − β ≤ 1, the detector
corresponds to the TM-CFAR [2]. So c = [β(lnβ − 1) −
α′(lnα′ − 1)]/[α′ − β]. Its IF and gross-error sensitivity
respectively are

IF (x; µ̂, F ) =
1
c
(

A

α′ − β
− 1), (14)

where

A =

⎧⎨
⎩

0 x < F−1(x)
x + lnα′ F−1(α) ≤ x < F−1(1 − β)
− lnβ + lnα′ x ≥ F−1(1 − β)

,

and γ∗(α, β) =
1
c

max{1,
lnα′ − lnβ

α′ − β
− 1}.

• When h = 1[0,1−β], 0 ≤ β < 1, the detector corre-
sponds to the CMLD-CFAR [2], which is a special case of
the TM-CFAR in which let α = 0. Then its gross-error
sensitivity is

γ∗(β) =
1 − β

β(lnβ − 1) − 1
max{1,

− lnβ

1 − β
− 1}.

Then the most B-robust CMLD-CFAR detector is achieved
at − ln β

1−β − 1 = 1, and the solution value is denoted as
β∗(1 − β∗ ≈ 0.797). The corresponding estimator is µ̂n =∑(1−β∗)n

i=1 Xi:n.

3. DETECTION PERFORMANCE EVALUATED BY
ASYMPTOTIC VARIANCE

As shown in the introduction, V (µ̂, F ) is the statistic mea-
suring the asymptotical efficiency of {µ̂n; n ≥ 1}, that sat-
isfies the Cramer-Rao inequality

V (µ̂, F ) ≥ 1
J(F )

=
1∫

(∂ ln f(x,µ)
∂µ |µ0)2d(F )

, (15)

where J(F ) is the Fisher information. The equality holds
at the maximum likelihood estimator (MLE) (e.g. the mean
estimation in CA-CFAR detector is a MLE at the expo-
nential distribution), which is optimal in terms of detection
performance. Thus, V (µ̂, F ) represents the efficiency of
{µ̂n;n ≥ 1} when estimating µ0. Higher the efficiency
is, closer the estimator is to the MLE, and less SNR loss it
brings to the detector. Though this is an asymptotic prop-
erty, we find that it brings pretty good results at finite n in
the following examples.

Then, it’s found that there is some close relationship
between V (µ̂, F ) and detection performance which can be
measured by the averaging decision threshold (ADT) pre-
sented by Rohling [1]. For it can hardly be analyzed math-
ematically, this relationship between two measures of the
OS-CFAR detector as an example is illustrated in Fig. 2,
where VOS(k, n) is achieved by substituting (13) into (3)
when α = k/n, and VTM (k, n) is achieved by substituting
(14) into (3) when α=(k − 1)/n, 1 − β =k/n. It’s clearly
shown that these two kinds of asymptotic variances have the
similar trend as the ADT when k takes the value form 1 to
n, where the VTM is more exact. The square root of ADT is
used in the figure for convenience of comparison since only
the relative values are concerned.
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Fig. 2. The comparison of asymptotic variance and ADT,
given n = 24, Pfa = 10−6.

Table 1. The trend of the ratio of k∗ minimizing
ADT (k, n) by n when n → ∞, referring to the α∗ min-
imizing VOS(α), Pfa = 10−6.

n k∗ 	α∗n
 ADT(k∗,n) ADT(�α∗n�,n) k∗/n
25 22 20 20.7 20.9 0.880
50 42 40 17.0 17.1 0.840
100 81 80 15.3 15.3 0.810
200 161 160 14.6 14.6 0.805

α∗ = arg minα VOS(α) 0.797

Moreover, an estimator minimizing V (µ̂, F ) is called
most efficient. The most efficient OS-CFAR detector is
achieved by substituting (13) to (3), it’s followed that

V (µ̂, F ) =
α

(1 − α) ln2(1 − α)
� VOS(α). (16)

Then let α∗=arg minα VOS(α), it has the same value as 1−
β∗ in Sect. 2.2. Meanwhile, the OS-CFAR detector which
requests the smallest detection SNR is determined by the
minimum of ADT lying at k∗ =arg mink ADT (k, n). The
comparison between k∗/n of different n and α∗ are shown
in Table 1. It can be seen that k∗ and 	α∗n
 are very close,
also ADT (k∗, n) and ADT (	α∗n
, n) are almost the same,
especially for large n. Then it illustrates that the one with
the estimator µ̂n = X�α∗n�:n achieves the best detection
performance approximately among all OS-CFAR detectors
with n reference cells.

All the results show that V (µ̂, F ) is a new approximate
measure of CFAR detection performance, and it has an ex-
plicit expression, which has more feasible computability than
the ADT in many detectors in common use. The shortage

of using the asymptotic variance is that it is a asymptoti-
cal result, and thus is naturally valid when large number of
adjacent cells are referenced.

4. CONCLUSION

The robustness of a CFAR detector is described by the vari-
ation of FAP and detection probability due to the clutter
distribution contamination, and it is mainly determined by
the IF of clutter power estimator which yields the detection
threshold. On the other hand, the efficiency of clutter power
estimator is shown to be an approximate measure of the de-
tection performance, which is represented by the asymptotic
variance of that estimator. Moreover, the asymptotic vari-
ance has a fixed functional relationship with the IF.

It should be emphasized that there is always a tradeoff
between these two features, because for adapting more situ-
ations a robust statistic must have some efficiency loss. That
is also applicable to the CFAR detectors. Thus, we can con-
struct high performance robust CFAR detectors by finding
the most efficient estimator under the constraint of some ro-
bustness indexes (e.g. the optimal B-robust estimator). This
work is under further research.
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