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ABSTRACT

We consider the problem of scale estimation when a nominal dis-
tribution is contaminated. Knowledge of the scale is necessary in
many signal detection and estimation problems and poor estimates
of the scale can have deleterious effects on subsequent process-
ing. The approach considered here is based on the M-estimation
concept of Huber, but employs a score function which is a linear
combination of basis functions whose weights are adaptively esti-
mated from the observations. Results suggest that this adaptivity
increases robustness over static M-estimators.

1. INTRODUCTION

Inspection of recent signal processing literature reveals renewed
interest in robust methods. It is becoming widely accepted that
robust performance can be achieved for only slight performance
decrease in the nominal scenario. Emphasis has been on location
estimation in the signal plus additive noise model and covariance
estimation in array signal processing, such as [1, 2]. Here we con-
centrate on the scale estimation problem which is often concomi-
tant with location estimation.

Consider the general signal in additive noise model,

yn = sn(θ) + σxn, n = 1, . . . , N, (1)

where xn is (standardised) iid noise, σ is the noise scale and the
signal sn is parameterised by θ. As noted in [3], the scale is a
nuisance parameter, but is generally important in achieving good
estimates of θ, although exceptions exist [4]. Here we only con-
sider the problem of scale estimation as this can be incorporated
into existing estimators for θ. Consequently, the scheme here will
assume that an estimate of θ, and hence sn(θ), is available.

The observations are assumed to follow a nominal distribution
subject to some contamination or deviation. We consider robust-
ness to imply insensitivity to such deviations. The noise will be
modelled as follows,

fX(x) = (1 − ε)fN (x) + εfC(x), (2)

where fN is the symmetric nominal probability density function
(pdf) with zero mean and fC is the symmetric, zero mean, con-
taminating distribution which occurs with probability ε. The noise
pdf, fX(x), is standardised to have a scale of unity, although it
is usually assumed that the contaminating distribution has a much
larger scale than the nominal as it describes the presence of outliers
in the observations.

It is well known that the sample standard deviation is not a ro-
bust estimator for the scale. Robust estimates of scale have been

developed, such as Huber’s minimax M-estimator [5]. A similar
approach is used here except that the score function used in the
M-estimator is able to adapt to changes in the contaminating dis-
tribution.

The outline of this paper is as follows. In Section 2 we briefly
review the maximum likelihood estimator (MLE) and M-estimator
for scale, before developing the adaptive robust scale M-estimator
in Section 3. Simulations and a discussion follow in Section 4,
before concluding in Section 5.

2. MAXIMUM LIKELIHOOD AND M-ESTIMATORS OF
SCALE

For the reasons described in the introduction, we assume that the
observations consist of noise only, the signal component having
been removed. Given the (standardised) noise density, fX(x), the
MLE for σ is

σ̂ML = argmin
σ

∑N

n=1
ρ

(yn

σ

)
(3)

where ρ(x) = − log fX(x) is the log-likelihood function of fX(x).
Equivalently, the ML solution may be found by solving the log-
likelihood equation,

N∑
n=1

ψ
(yn

σ

)
= 0 (4)

for σ where

ψ (x) = −1 + xρ̇(x) = −1 − x
ḟX(x)

fX(x)
(5)

is the scale score function of fX(x) and ḟX(x) denotes the deriva-
tive of fX(x) with respect to x. Note that, although related, scale
score functions are not to be confused with location score func-
tions.

The MLE requires fX(x) to be known and so without a priori
knowledge of fX(x), estimation of σ cannot be optimal in the
ML sense. Therefore, performance is uncertain with respect to
deviations from the nominal distribution.

In an M-estimator the log-likelihood function ρ(x) of the MLE
is replaced with a similarly behaved penalty function, �(x). The
penalty function is chosen to confer robustness on the estimator
under deviations from the assumed density. It follows that simi-
larly to ML, σ can be estimated from (4) with ψ(x) replaced by
ϕ(x) = −1 + x�̇(x),

N∑
n=1

ϕ
(yn

σ

)
= 0. (6)
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When fX(x) is unknown, the distance between the penalty
and log-likelihood functions is uncertain. Selection of the penalty
function is then of prime importance in ensuring the performance
of the estimator is not highly sensitive to fX(x) but is robust over
a wide class of noise models.

2.1. Huber’s minimax estimator for scale

With this in mind, Huber proposed that a clipped quadratic score
function be used in the M-estimator for scale,

ϕH(x; k) = min(x2, k2) − δ =

{
x2 − δ, |x| ≤ k
k2 − δ, |x| > k,

(7)

which minimises the maximum relative asymptotic variance of the
scale estimate. δ is determined such that the estimator is unbiased
for a nominal Gaussian distribution,

δ = 1 − 2kφ(k) + 2(1 − k2)(Φ(k) − 1) (8)

where φ(x) and Φ(x) are the standard Gaussian pdf and cdf re-
spectively. The parameter k controls the sensitivity of the estima-
tor to the contaminating distribution and increases as ε, the pro-
portion of outliers, decreases. Hence, as ε → 0, k → ∞ and the
score function used in the M-estimator becomes a quadratic func-
tion, reducing the estimator to the sample standard deviation. The
optimum value of k is determined from ε as detailed in [5].

3. ADAPTIVE ROBUST SCALE ESTIMATION

In [6, 3] an adaptive M-estimator for location was developed by
modelling the location score function as a linear combination of
basis functions. To ensure robust behaviour against outliers, the
bases were chosen to be the location score functions of several
heavy tailed distributions.

The approach taken here is similar where the scale score func-
tion is parametrically modelled as a linear combination of basis
functions,

ϕ (x) =

Q∑
q=1

aqgq(x) = aTg(x), (9)

where the weights are a = (a1, . . . , aQ)T and the bases are g(x) =

(g1(x), . . . , gQ(x))T.
The bases are chosen for their ability to approximate ψ(x).

For instance, the bases can simply be a set of score functions ob-
tained from distributions known to be close, in some sense, to
fX(x). The weights can then be chosen to minimise some mea-
sure of distance between ϕ(x) and ψ(x) or to maximise the per-
formance of the estimator.

A sensible measure of distance between ϕ(x) and ψ(x) is the
mean squared error (MSE), from which the weights are defined as

a = argmin
a

E
[
(ϕ (x) − ψ (x))2

]
. (10)

a is then obtained as the solution to the normal equations,

E
[
g(x)gT(x)

]
a = E[g(x)ψ (x)] , (11)

so that

a = E
[
g(x)gT(x)

]−1

E[g(x)ψ (x)] . (12)

This estimate exists given that the following conditions hold

C1. E[g(x)gT(x)] is finite and nonsingular.

C2. E[g(x)ψ(x)] is finite.

Further implications of these conditions on the behaviour of the
bases are discussed in the Appendix. The presence of the true
scale score function ψ in (12) can be avoided if

lim
x→±∞

xgq(x)fX(x) = 0, (13)

in which case it can be shown that

E[xġ(x)] = E[g(x)ψ (x)] (14)

and the estimator for a becomes

a = E
[
g(x)gT(x)

]−1

E[xġ(x)] , (15)

which is independent of the true scale score function. In prac-
tice the expectation is replaced with an empirical mean. Note that
this equation is slightly different from the case of estimating the
weights of location score functions, as described in [3].

For similar theoretical and practical considerations as those
articulated in [3], we impose the following constraints on aq

0 ≤ aq ≤ 1,

Q∑
q=1

aq = 1. (16)

The final algorithm comprises of the two alternating steps: es-
timate the scale score function and then find the M-estimate of the
scale based upon the estimated scale score function. The algorithm
is summarised in Table 1.

Table 1. Iterative algorithm for the adaptive robust scale estimator.

Step 1. Initialisation: Set i = 0. Obtain an initial esti-
mate of σ, σ̂0.

Step 2. Scale the observations: x̂n = yn/σ̂i.

Step 3. Estimate the scale score function: From x̂n, esti-
mate the weights,

â =

(
N∑

n=1

g(x̂n)gT(x̂n)

)−1 N∑
n=1

x̂nġ(x̂n),

subject to (16). The scale score function estimate
is ϕ(x) = âTg(x).

Step 4. Update the estimate of σi to σi+1: Solve (6).

Step 5. Check for convergence: If |σ̂i+1 − σ̂i| < ε|σ̂i|
stop, otherwise set i → i + 1 and go to step 2.

4. SIMULATIONS AND DISCUSSION

To test the adaptive robust scale estimator, consider the following
scenario. We wish to estimate the scale σN of a nominal Gaussian
process, XN . The observations include a component from a con-
taminating process XC . Of course if XC has much larger scale
than XN these contaminating observations may appear as outliers.

II - 1050

➡ ➡



The traditional approach to scale estimation ignores the pres-
ence of outliers and uses the sample standard deviation while a ro-
bust approach could use Huber’s minimax estimator. The problem
with this is that the best point, k, at which to clip the quadratic
function is dependent on the relative scale of the nominal and
contaminating processes, as well as other properties of XC . As
noted previously, the sample standard deviation can be obtained
by setting k = ∞, for no clipping, hence we denote this estima-
tor ϕH(x; k = ∞). The adaptive robust scale estimator will be
compared to these estimators where the basis functions consist of
a number of clipped quadratic functions with different k.

For the simulation results shown here we allow 0.1 ≤ σN ≤
10, 0 ≤ ε ≤ 0.1 and set XC ∼ N (0, 100). Overall, the observed
process can be modelled as

X ∼ (1 − ε)N (0, σ2
N ) + εN (0, 100) .

The number of observations is N = 1000. We consider 3 clipped
quadratic bases, ϕH(x; k), k = 1, 2, 3, in the adaptive robust esti-
mator. These functions are shown in Figure 1.
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Fig. 1. Score functions used in simulations.

The MSEs of the proposed adaptive M-estimator and four M-
estimators with static score functions, ϕH(x; k), k = 1, 2, 3,∞,
were evaluated over 500 Monte Carlo realisations. Each estimator
was found to be best under some parameter settings. However,
none was uniformly best, or even uniformly better than any other
estimator.

Significantly, when compared to the static M-estimators, the
relative performance of the proposed estimator was fairly constant
over the parameter space (ε, σN ). This is shown in Figure 2 where
the darker the square, the better the relative performance for that
particular parameter setting – a black square indicates the best
method (lowest MSE) while white indicates the worst performance
(highest MSE). Of the 5 estimators, the proposed estimator’s MSE
was usually 2nd or 3rd lowest – it was occasionally best, but never
4th or 5th (last). By contrast, the others showed much more vari-
able relative performance, see Figure 3. Therefore, it could be
claimed that the proposed estimator is more robust in this case.

Since the full set of results is too large to show here, Table 2
shows the MSE of the estimators versus ε with σN = 1. As
expected, all methods perform well for un-contaminated observa-
tions (ε = 0), however as contamination increases, the sample
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Fig. 2. Relative performance of the proposed adaptive M-estimator
(darker squares indicate better performance).

standard deviation breaks down. The adaptive M-estimator has
similar performance to the static M-estimator with k = 2. In the
case shown here, k = 1 is sufficiently wide to capture enough
observations from the XN , while rejecting those from XC , hence
its good relative performance. Conversely, when σN is large, the
higher value for k in the M-estimator using ϕH(x; k = 3) is
needed to avoid clipping too much data from XN .

Finally we comment on the bias of the adaptive M-estimator.
When each of the bases used in the adaptive M-estimator is consid-
ered individually in a static M-estimator, they yield unique, unbi-
ased estimates of the scale when the nominal distribution is Gaus-
sian and there is no contaminant. This is a consequence of the
monotonicity of E[ϕH(x; k)] for the chosen k = 1, 2, 3, and that
δ was set to yield unbiased M-estimates. As a result of this, it can
be shown that adaptive M-estimator which uses a linear combi-
nation of these bases also produces unique unbiased estimates of
scale for a nominal Gaussian distribution with no contamination
subject to the constraints (16).

5. CONCLUSION

An M-estimator for scale was proposed which adaptively estimates
the scale score function. This estimator can be included in robust
parameter estimation problems, such as the signal in additive noise
scenario, where the scale is a nuisance parameter.

A simulation study was carried out which compared the per-
formance of the proposed adaptive M-estimator with that of static
M-estimators with fixed score functions. In the study the adaptive
scheme achieved good performance (lower MSE) across a wider
range of the parameter space than the static M-estimator. This sug-
gests that this estimator is more robust than the static M-estimator.

6. APPENDIX

The constraints on the bases imposed by conditions C1 and C2
are more clearly interpreted by considering their asymptotic be-
haviour. First, assume that the tails of the noise density decay
asymptotically at an algebraic rate,

lim
x→±∞

fX(x) = c|x|−α−1, (17)
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(a) M-estimator, k = 1 (b) M-estimator, k = 2
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(c) M-estimator, k = 3 (d) Sample std, k = ∞

Fig. 3. Relative performance of the existing static M-estimators.

ε (×10−2)
Method 0 0.5 1 2 5 10

Adaptive M-estimator 0.5 0.7 1.3 2.7 10.7 41.9
M-estimator, k = 1 1.1 1.0 1.1 1.7 4.6 16.7
M-estimator, k = 2 0.5 0.7 0.9 2.2 11.5 58.9
M-estimator, k = 3 0.5 0.8 1.9 6.9 54.4 460.5
Sample std, k = ∞ 0.5 68.4 198.3 547.9 2019.7 5277.5

Table 2. MSE (×10−3) for σN = 1.

where c is a constant and α > 0 is the rate of decay, in the case of
symmetric alpha stable distributions, 0 < α ≤ 2.

Second, assume that the basis function g(x) decays asymptot-
ically at an algebraic rate,

lim
x→±∞

g(x) = b|x|−β , (18)

where b is some constant and β is the rate of decay.
Given that g(x) and fX(x) are bounded over −∞ < x < ∞,

or at least that∫ b2

−b1

g(x)fX(x) dx < ∞, ∞ < b1, b2 < ∞ (19)

such that for x ∈ {{x < −b1} ∩ {x > b2}} the asymptotic
algebraic decay is accurate, the following holds,

Conditions C1 and C2 are satisfied if β ≥ 0, that is, if
|g(x)| is asymptotically non-increasing.

Note that β ≥ 0 also satisfies (13). If the noise density or
basis function decays at a non-algebraic but faster rate, such as
exponentially, then this condition is again satisfied.
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